Loading AI tools
Sequence of operations for a task From Wikipedia, the free encyclopedia
In mathematics and computer science, an algorithm (/ˈælɡərɪðəm/ ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation.[1] Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning).
This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
In contrast, a heuristic is an approach to solving problems that do not have well-defined correct or optimal results.[2] For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation.
As an effective method, an algorithm can be expressed within a finite amount of space and time[3] and in a well-defined formal language[4] for calculating a function.[5] Starting from an initial state and initial input (perhaps empty),[6] the instructions describe a computation that, when executed, proceeds through a finite[7] number of well-defined successive states, eventually producing "output"[8] and terminating at a final ending state. The transition from one state to the next is not necessarily deterministic; some algorithms, known as randomized algorithms, incorporate random input.[9]
Around 825 AD, Persian scientist and polymath Muḥammad ibn Mūsā al-Khwārizmī wrote kitāb al-ḥisāb al-hindī ("Book of Indian computation") and kitab al-jam' wa'l-tafriq al-ḥisāb al-hindī ("Addition and subtraction in Indian arithmetic").[1] In the early 12th century, Latin translations of said al-Khwarizmi texts involving the Hindu–Arabic numeral system and arithmetic appeared, for example Liber Alghoarismi de practica arismetrice, attributed to John of Seville, and Liber Algorismi de numero Indorum, attributed to Adelard of Bath.[10] Hereby, alghoarismi or algorismi is the Latinization of Al-Khwarizmi's name; the text starts with the phrase Dixit Algorismi, or "Thus spoke Al-Khwarizmi".[2] Around 1230, the English word algorism is attested and then by Chaucer in 1391, English adopted the French term.[3][4][clarification needed] In the 15th century, under the influence of the Greek word ἀριθμός (arithmos, "number"; cf. "arithmetic"), the Latin word was altered to algorithmus.[citation needed]
One informal definition is "a set of rules that precisely defines a sequence of operations",[11][need quotation to verify] which would include all computer programs (including programs that do not perform numeric calculations), and any prescribed bureaucratic procedure[12] or cook-book recipe.[13] In general, a program is an algorithm only if it stops eventually[14]—even though infinite loops may sometimes prove desirable. Boolos, Jeffrey & 1974, 1999 define an algorithm to be an explicit set of instructions for determining an output, that can be followed by a computing machine or a human who could only carry out specific elementary operations on symbols.[15]
Most algorithms are intended to be implemented as computer programs. However, algorithms are also implemented by other means, such as in a biological neural network (for example, the human brain performing arithmetic or an insect looking for food), in an electrical circuit, or a mechanical device.
This section is missing information about 20th and 21st century development of computer algorithms. (October 2023) |
Step-by-step procedures for solving mathematical problems have been recorded since antiquity. This includes in Babylonian mathematics (around 2500 BC),[16] Egyptian mathematics (around 1550 BC),[16] Indian mathematics (around 800 BC and later),[17][18] the Ifa Oracle (around 500 BC),[19] Greek mathematics (around 240 BC),[20] Chinese mathematics (around 200 BC and later),[21] and Arabic mathematics (around 800 AD).[22]
The earliest evidence of algorithms is found in ancient Mesopotamian mathematics. A Sumerian clay tablet found in Shuruppak near Baghdad and dated to c. 2500 BC describes the earliest division algorithm.[16] During the Hammurabi dynasty c. 1800 – c. 1600 BC, Babylonian clay tablets described algorithms for computing formulas.[23] Algorithms were also used in Babylonian astronomy. Babylonian clay tablets describe and employ algorithmic procedures to compute the time and place of significant astronomical events.[24]
Algorithms for arithmetic are also found in ancient Egyptian mathematics, dating back to the Rhind Mathematical Papyrus c. 1550 BC.[16] Algorithms were later used in ancient Hellenistic mathematics. Two examples are the Sieve of Eratosthenes, which was described in the Introduction to Arithmetic by Nicomachus,[25][20]: Ch 9.2 and the Euclidean algorithm, which was first described in Euclid's Elements (c. 300 BC).[20]: Ch 9.1 Examples of ancient Indian mathematics included the Shulba Sutras, the Kerala School, and the Brāhmasphuṭasiddhānta.[17]
The first cryptographic algorithm for deciphering encrypted code was developed by Al-Kindi, a 9th-century Arab mathematician, in A Manuscript On Deciphering Cryptographic Messages. He gave the first description of cryptanalysis by frequency analysis, the earliest codebreaking algorithm.[22]
Bolter credits the invention of the weight-driven clock as "the key invention [of Europe in the Middle Ages]," specifically the verge escapement mechanism[26] producing the tick and tock of a mechanical clock. "The accurate automatic machine"[27] led immediately to "mechanical automata" in the 13th century and "computational machines"—the difference and analytical engines of Charles Babbage and Ada Lovelace in the mid-19th century.[28] Lovelace designed the first algorithm intended for processing on a computer, Babbage's analytical engine, which is the first device considered a real Turing-complete computer instead of just a calculator. Although a full implementation of Babbage's second device was not realized for decades after her lifetime, Lovelace has been called "history's first programmer".
Bell and Newell (1971) write that the Jacquard loom, a precursor to Hollerith cards (punch cards), and "telephone switching technologies" led to the development of the first computers.[29] By the mid-19th century, the telegraph, the precursor of the telephone, was in use throughout the world. By the late 19th century, the ticker tape (c. 1870s) was in use, as were Hollerith cards (c. 1890). Then came the teleprinter (c. 1910) with its punched-paper use of Baudot code on tape.
Telephone-switching networks of electromechanical relays were invented in 1835. These led to the invention of the digital adding device by George Stibitz in 1937. While working in Bell Laboratories, he observed the "burdensome" use of mechanical calculators with gears. "He went home one evening in 1937 intending to test his idea... When the tinkering was over, Stibitz had constructed a binary adding device".[30][31]
In 1928, a partial formalization of the modern concept of algorithms began with attempts to solve the Entscheidungsproblem (decision problem) posed by David Hilbert. Later formalizations were framed as attempts to define "effective calculability"[32] or "effective method".[33] Those formalizations included the Gödel–Herbrand–Kleene recursive functions of 1930, 1934 and 1935, Alonzo Church's lambda calculus of 1936, Emil Post's Formulation 1 of 1936, and Alan Turing's Turing machines of 1936–37 and 1939.
Algorithms can be expressed in many kinds of notation, including natural languages, pseudocode, flowcharts, drakon-charts, programming languages or control tables (processed by interpreters). Natural language expressions of algorithms tend to be verbose and ambiguous and are rarely used for complex or technical algorithms. Pseudocode, flowcharts, drakon-charts, and control tables are structured expressions of algorithms that avoid common ambiguities of natural language. Programming languages are primarily for expressing algorithms in a computer-executable form, but are also used to define or document algorithms.
There are many possible representations and Turing machine programs can be expressed as a sequence of machine tables (see finite-state machine, state-transition table, and control table for more), as flowcharts and drakon-charts (see state diagram for more), as a form of rudimentary machine code or assembly code called "sets of quadruples", and more. Algorithm representations can also be classified into three accepted levels of Turing machine description: high-level description, implementation description, and formal description.[34] A high-level description describes qualities of the algorithm itself, ignoring how it is implemented on the Turing machine.[34] An implementation description describes the general manner in which the machine moves its head and stores data in order to carry out the algorithm, but does not give exact states.[34] In the most detail, a formal description gives the exact state table and list of transitions of the Turing machine.[34]
The graphical aid called a flowchart offers a way to describe and document an algorithm (and a computer program corresponding to it). It has four primary symbols: arrows showing program flow, rectangles (SEQUENCE, GOTO), diamonds (IF-THEN-ELSE), and dots (OR-tie). Sub-structures can "nest" in rectangles, but only if a single exit occurs from the superstructure.
It is often important to know how much time, storage, or other cost an algorithm may require. Methods have been developed for the analysis of algorithms to obtain such quantitative answers (estimates); for example, an algorithm that adds up the elements of a list of n numbers would have a time requirement of , using big O notation. The algorithm only needs to remember two values: the sum of all the elements so far, and its current position in the input list. If the space required to store the input numbers is not counted, it has a space requirement of , otherwise is required.
Different algorithms may complete the same task with a different set of instructions in less or more time, space, or 'effort' than others. For example, a binary search algorithm (with cost ) outperforms a sequential search (cost ) when used for table lookups on sorted lists or arrays.
The analysis, and study of algorithms is a discipline of computer science. Algorithms are often studied abstractly, without referencing any specific programming language or implementation. Algorithm analysis resembles other mathematical disciplines as it focuses on the algorithm's properties, not implementation. Pseudocode is typical for analysis as it is a simple and general representation. Most algorithms are implemented on particular hardware/software platforms and their algorithmic efficiency is tested using real code. The efficiency of a particular algorithm may be insignificant for many "one-off" problems but it may be critical for algorithms designed for fast interactive, commercial or long life scientific usage. Scaling from small n to large n frequently exposes inefficient algorithms that are otherwise benign.
Empirical testing is useful for uncovering unexpected interactions that affect performance. Benchmarks may be used to compare before/after potential improvements to an algorithm after program optimization. Empirical tests cannot replace formal analysis, though, and are non-trivial to perform fairly.[35]
To illustrate the potential improvements possible even in well-established algorithms, a recent significant innovation, relating to FFT algorithms (used heavily in the field of image processing), can decrease processing time up to 1,000 times for applications like medical imaging.[36] In general, speed improvements depend on special properties of the problem, which are very common in practical applications.[37] Speedups of this magnitude enable computing devices that make extensive use of image processing (like digital cameras and medical equipment) to consume less power.
Algorithm design is a method or mathematical process for problem-solving and engineering algorithms. The design of algorithms is part of many solution theories, such as divide-and-conquer or dynamic programming within operation research. Techniques for designing and implementing algorithm designs are also called algorithm design patterns,[38] with examples including the template method pattern and the decorator pattern. One of the most important aspects of algorithm design is resource (run-time, memory usage) efficiency; the big O notation is used to describe e.g., an algorithm's run-time growth as the size of its input increases.[39]
Per the Church–Turing thesis, any algorithm can be computed by any Turing complete model. Turing completeness only requires four instruction types—conditional GOTO, unconditional GOTO, assignment, HALT. However, Kemeny and Kurtz observe that, while "undisciplined" use of unconditional GOTOs and conditional IF-THEN GOTOs can result in "spaghetti code", a programmer can write structured programs using only these instructions; on the other hand "it is also possible, and not too hard, to write badly structured programs in a structured language".[40] Tausworthe augments the three Böhm-Jacopini canonical structures:[41] SEQUENCE, IF-THEN-ELSE, and WHILE-DO, with two more: DO-WHILE and CASE.[42] An additional benefit of a structured program is that it lends itself to proofs of correctness using mathematical induction.[43]
By themselves, algorithms are not usually patentable. In the United States, a claim consisting solely of simple manipulations of abstract concepts, numbers, or signals does not constitute "processes" (USPTO 2006), so algorithms are not patentable (as in Gottschalk v. Benson). However practical applications of algorithms are sometimes patentable. For example, in Diamond v. Diehr, the application of a simple feedback algorithm to aid in the curing of synthetic rubber was deemed patentable. The patenting of software is controversial,[44] and there are criticized patents involving algorithms, especially data compression algorithms, such as Unisys's LZW patent. Additionally, some cryptographic algorithms have export restrictions (see export of cryptography).
Another way of classifying algorithms is by their design methodology or paradigm. Some common paradigms are:
For optimization problems there is a more specific classification of algorithms; an algorithm for such problems may fall into one or more of the general categories described above as well as into one of the following:
One of the simplest algorithms finds the largest number in a list of numbers of random order. Finding the solution requires looking at every number in the list. From this follows a simple algorithm, which can be described in plain English as:
High-level description:
(Quasi-)formal description: Written in prose but much closer to the high-level language of a computer program, the following is the more formal coding of the algorithm in pseudocode or pidgin code:
Algorithm LargestNumber Input: A list of numbers L. Output: The largest number in the list L.
if L.size = 0 return null largest ← L[0] for each item in L, do if item > largest, then largest ← item return largest
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.