Color–flavor locking
Phenomenon in high-density strange matter From Wikipedia, the free encyclopedia
Color–flavor locking (CFL) is a phenomenon that is expected to occur in ultra-high-density strange matter, a form of quark matter. The quarks form Cooper pairs, whose color properties are correlated with their flavor properties in a one-to-one correspondence between three color pairs and three flavor pairs. According to the Standard Model of particle physics, the color-flavor-locked phase is the highest-density phase of three-flavor colored matter.[1]
Color-flavor-locked Cooper pairing
Summarize
Perspective
If each quark is represented as , with color index taking values 1, 2, 3 corresponding to red, green, and blue, and flavor index taking values 1, 2, 3 corresponding to up, down, and strange, then the color-flavor-locked pattern of Cooper pairing is [2]
This means that a Cooper pair of an up quark and a down quark must have colors red and green, and so on. This pairing pattern is special because it leaves a large unbroken[clarification needed] symmetry group.
Physical properties
The CFL phase has several remarkable properties.
- It breaks chiral symmetry.
- It is a superfluid.
- It is an electromagnetic insulator, in which there is a "rotated" photon, containing a small admixture of one of the gluons.
- It has the same symmetries as sufficiently dense hyperonic matter.
There are several variants of the CFL phase, representing distortions of the pairing structure in response to external stresses such as a difference between the mass of the strange quark and the mass of the up and down quarks.
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.