Center (group theory)
Set of elements that commute with every element of a group From Wikipedia, the free encyclopedia
Remove ads
Set of elements that commute with every element of a group From Wikipedia, the free encyclopedia
In abstract algebra, the center of a group G is the set of elements that commute with every element of G. It is denoted Z(G), from German Zentrum, meaning center. In set-builder notation,
∘ | e | b | a | a2 | a3 | ab | a2b | a3b |
---|---|---|---|---|---|---|---|---|
e | e | b | a | a2 | a3 | ab | a2b | a3b |
b | b | e | a3b | a2b | ab | a3 | a2 | a |
a | a | ab | a2 | a3 | e | a2b | a3b | b |
a2 | a2 | a2b | a3 | e | a | a3b | b | ab |
a3 | a3 | a3b | e | a | a2 | b | ab | a2b |
ab | ab | a | b | a3b | a2b | e | a3 | a2 |
a2b | a2b | a2 | ab | b | a3b | a | e | a3 |
a3b | a3b | a3 | a2b | ab | b | a2 | a | e |
The center is a normal subgroup, Z(G) ⊲ G, and also a characteristic subgroup, but is not necessarily fully characteristic. The quotient group, G / Z(G), is isomorphic to the inner automorphism group, Inn(G).
A group G is abelian if and only if Z(G) = G. At the other extreme, a group is said to be centerless if Z(G) is trivial; i.e., consists only of the identity element.
The elements of the center are central elements.
The center of G is always a subgroup of G. In particular:
Furthermore, the center of G is always an abelian and normal subgroup of G. Since all elements of Z(G) commute, it is closed under conjugation.
A group homomorphism f : G → H might not restrict to a homomorphism between their centers. The image elements f (g) commute with the image f ( G ), but they need not commute with all of H unless f is surjective. Thus the center mapping is not a functor between categories Grp and Ab, since it does not induce a map of arrows.
By definition, an element is central whenever its conjugacy class contains only the element itself; i.e. Cl(g) = {g}.
The center is the intersection of all the centralizers of elements of G:
As centralizers are subgroups, this again shows that the center is a subgroup.
Consider the map f : G → Aut(G), from G to the automorphism group of G defined by f(g) = ϕg, where ϕg is the automorphism of G defined by
The function, f is a group homomorphism, and its kernel is precisely the center of G, and its image is called the inner automorphism group of G, denoted Inn(G). By the first isomorphism theorem we get,
The cokernel of this map is the group Out(G) of outer automorphisms, and these form the exact sequence
Quotienting out by the center of a group yields a sequence of groups called the upper central series:
The kernel of the map G → Gi is the ith center[1] of G (second center, third center, etc.), denoted Zi(G).[2] Concretely, the (i+1)-st center comprises the elements that commute with all elements up to an element of the ith center. Following this definition, one can define the 0th center of a group to be the identity subgroup. This can be continued to transfinite ordinals by transfinite induction; the union of all the higher centers is called the hypercenter.[note 1]
The ascending chain of subgroups
stabilizes at i (equivalently, Zi(G) = Zi+1(G)) if and only if Gi is centerless.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.