Cameron–Erdős conjecture
Theorem in combinatorics From Wikipedia, the free encyclopedia
In combinatorics, the Cameron–Erdős conjecture (now a theorem) is the statement that the number of sum-free sets contained in is
The sum of two odd numbers is even, so a set of odd numbers is always sum-free. There are odd numbers in [N ], and so subsets of odd numbers in [N ]. The Cameron–Erdős conjecture says that this counts a constant proportion of the sum-free sets.
The conjecture was stated by Peter Cameron and Paul Erdős in 1988.[1] It was proved by Ben Green[2] and independently by Alexander Sapozhenko[3][4] in 2003.
See also
Notes
Wikiwand - on
Seamless Wikipedia browsing. On steroids.