Cameron–Erdős conjecture

Theorem in combinatorics From Wikipedia, the free encyclopedia

In combinatorics, the Cameron–Erdős conjecture (now a theorem) is the statement that the number of sum-free sets contained in is

The sum of two odd numbers is even, so a set of odd numbers is always sum-free. There are odd numbers in [N], and so subsets of odd numbers in [N]. The Cameron–Erdős conjecture says that this counts a constant proportion of the sum-free sets.

The conjecture was stated by Peter Cameron and Paul Erdős in 1988.[1] It was proved by Ben Green[2] and independently by Alexander Sapozhenko[3][4] in 2003.

See also

Notes

Wikiwand - on

Seamless Wikipedia browsing. On steroids.