Loading AI tools
Theoretical framework for planar Euclidean geometry From Wikipedia, the free encyclopedia
In 1932, G. D. Birkhoff created a set of four postulates of Euclidean geometry in the plane, sometimes referred to as Birkhoff's axioms.[1] These postulates are all based on basic geometry that can be confirmed experimentally with a scale and protractor. Since the postulates build upon the real numbers, the approach is similar to a model-based introduction to Euclidean geometry.
Birkhoff's axiomatic system was utilized in the secondary-school textbook by Birkhoff and Beatley.[2] These axioms were also modified by the School Mathematics Study Group to provide a new standard for teaching high school geometry, known as SMSG axioms. A few other textbooks in the foundations of geometry use variants of Birkhoff's axioms.[3]
The distance between two points A and B is denoted by d(A, B), and the angle formed by three points A, B, C is denoted by ∠ ABC.
Postulate I: Postulate of line measure. The set of points {A, B, ...} on any line can be put into a 1:1 correspondence with the real numbers {a, b, ...} so that |b − a| = d(A, B) for all points A and B.
Postulate II: Point-line postulate. There is one and only one line ℓ that contains any two given distinct points P and Q.
Postulate III: Postulate of angle measure. The set of rays {ℓ, m, n, ...} through any point O can be put into 1:1 correspondence with the real numbers a (mod 2π) so that if A and B are points (not equal to O) of ℓ and m, respectively, the difference am − aℓ (mod 2π) of the numbers associated with the lines ℓ and m is ∠ AOB. Furthermore, if the point B on m varies continuously in a line r not containing the vertex O, the number am varies continuously also.
Postulate IV: Postulate of similarity. Given two triangles ABC and A'B'C' and some constant k > 0 such that d(A', B' ) = kd(A, B), d(A', C' ) = kd(A, C) and ∠ B'A'C' = ±∠ BAC, then d(B', C' ) = kd(B, C), ∠ C'B'A' = ±∠ CBA, and ∠ A'C'B' = ±∠ ACB.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.