In statistics, the Bhattacharyya distance is a quantity which represents a notion of similarity between two probability distributions.[1] It is closely related to the Bhattacharyya coefficient, which is a measure of the amount of overlap between two statistical samples or populations.

It is not a metric, despite being named a "distance", since it does not obey the triangle inequality.

History

Both the Bhattacharyya distance and the Bhattacharyya coefficient are named after Anil Kumar Bhattacharyya, a statistician who worked in the 1930s at the Indian Statistical Institute.[2] He has developed this through a series of papers.[3][4][5] He developed the method to measure the distance between two non-normal distributions and illustrated this with the classical multinomial populations,[3] this work despite being submitted for publication in 1941, appeared almost five years later in Sankhya.[3][2] Consequently, Professor Bhattacharyya started working toward developing a distance metric for probability distributions that are absolutely continuous with respect to the Lebesgue measure and published his progress in 1942, at Proceedings of the Indian Science Congress[4] and the final work has appeared in 1943 in the Bulletin of the Calcutta Mathematical Society.[5]

Definition

For probability distributions and on the same domain , the Bhattacharyya distance is defined as

where

is the Bhattacharyya coefficient for discrete probability distributions.

For continuous probability distributions, with and where and are the probability density functions, the Bhattacharyya coefficient is defined as

.

More generally, given two probability measures on a measurable space , let be a (sigma finite) measure such that and are absolutely continuous with respect to i.e. such that , and for probability density functions with respect to defined -almost everywhere. Such a measure, even such a probability measure, always exists, e.g. . Then define the Bhattacharyya measure on by

It does not depend on the measure , for if we choose a measure such that and an other measure choice are absolutely continuous i.e. and , then

,

and similarly for . We then have

.

We finally define the Bhattacharyya coefficient

.

By the above, the quantity does not depend on , and by the Cauchy inequality . In particular if is absolutely continuous wrt to with Radon Nikodym derivative , then

Gaussian case

Let , , where is the normal distribution with mean and variance ; then

.

And in general, given two multivariate normal distributions ,

,

where [6] Note that the first term is a squared Mahalanobis distance.

Properties

and .

does not obey the triangle inequality, though the Hellinger distance does.

Bounds on Bayes error

The Bhattacharyya distance can be used to upper and lower bound the Bayes error rate:

where and is the posterior probability.[7]

Applications

The Bhattacharyya coefficient quantifies the "closeness" of two random statistical samples.

Given two sequences from distributions , bin them into buckets, and let the frequency of samples from in bucket be , and similarly for , then the sample Bhattacharyya coefficient is

which is an estimator of . The quality of estimation depends on the choice of buckets; too few buckets would overestimate , while too many would underestimate.

A common task in classification is estimating the separability of classes. Up to a multiplicative factor, the squared Mahalanobis distance is a special case of the Bhattacharyya distance when the two classes are normally distributed with the same variances. When two classes have similar means but significantly different variances, the Mahalanobis distance would be close to zero, while the Bhattacharyya distance would not be.

The Bhattacharyya coefficient is used in the construction of polar codes.[8]

The Bhattacharyya distance is used in feature extraction and selection,[9] image processing,[10] speaker recognition,[11] phone clustering,[12] and in genetics.[13]

See also

References

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.