Loading AI tools
From Wikipedia, the free encyclopedia
In mathematics, the Bhatia–Davis inequality, named after Rajendra Bhatia and Chandler Davis, is an upper bound on the variance σ2 of any bounded probability distribution on the real line.
Let m and M be the lower and upper bounds, respectively, for a set of real numbers a1, ..., an , with a particular probability distribution. Let μ be the expected value of this distribution.
Then the Bhatia–Davis inequality states:
Equality holds if and only if every aj in the set of values is equal either to M or to m.[1]
Since ,
.
Thus,
.
If is a positive and unital linear mapping of a C* -algebra into a C* -algebra , and A is a self-adjoint element of satisfying m A M, then:
.
If is a discrete random variable such that
where , then:
,
where and .
The Bhatia–Davis inequality is stronger than Popoviciu's inequality on variances (note, however, that Popoviciu's inequality does not require knowledge of the expectation or mean), as can be seen from the conditions for equality. Equality holds in Popoviciu's inequality if and only if half of the aj are equal to the upper bounds and half of the aj are equal to the lower bounds. Additionally, Sharma[2] has made further refinements on the Bhatia–Davis inequality.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.