Loading AI tools
Probability distribution modeling a coin toss which need not be fair From Wikipedia, the free encyclopedia
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli,[1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability . Less formally, it can be thought of as a model for the set of possible outcomes of any single experiment that asks a yes–no question. Such questions lead to outcomes that are Boolean-valued: a single bit whose value is success/yes/true/one with probability p and failure/no/false/zero with probability q. It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and p would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and p would be the probability of tails). In particular, unfair coins would have
The Bernoulli distribution is a special case of the binomial distribution where a single trial is conducted (so n would be 1 for such a binomial distribution). It is also a special case of the two-point distribution, for which the possible outcomes need not be 0 and 1. [2]
If is a random variable with a Bernoulli distribution, then:
The probability mass function of this distribution, over possible outcomes k, is
This can also be expressed as
or as
The Bernoulli distribution is a special case of the binomial distribution with [4]
The kurtosis goes to infinity for high and low values of but for the two-point distributions including the Bernoulli distribution have a lower excess kurtosis, namely −2, than any other probability distribution.
The Bernoulli distributions for form an exponential family.
The maximum likelihood estimator of based on a random sample is the sample mean.
The expected value of a Bernoulli random variable is
This is due to the fact that for a Bernoulli distributed random variable with and we find
The variance of a Bernoulli distributed is
We first find
From this follows
With this result it is easy to prove that, for any Bernoulli distribution, its variance will have a value inside .
The skewness is . When we take the standardized Bernoulli distributed random variable we find that this random variable attains with probability and attains with probability . Thus we get
The raw moments are all equal due to the fact that and .
The central moment of order is given by
The first six central moments are
The higher central moments can be expressed more compactly in terms of and
The first six cumulants are
Entropy is a measure of uncertainty or randomness in a probability distribution. For a Bernoulli random variable with success probability and failure probability , the entropy is defined as:
The entropy is maximized when , indicating the highest level of uncertainty when both outcomes are equally likely. The entropy is zero when or , where one outcome is certain.
Fisher information measures the amount of information that an observable random variable carries about an unknown parameter upon which the probability of depends. For the Bernoulli distribution, the Fisher information with respect to the parameter is given by:
Proof:
This represents the probability of observing given the parameter .
It is maximized when , reflecting maximum uncertainty and thus maximum information about the parameter .
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.