Barth–Nieto quintic
From Wikipedia, the free encyclopedia
In algebraic geometry, the Barth–Nieto quintic is a quintic 3-fold in 4 (or sometimes 5) dimensional projective space studied by Wolf Barth and Isidro Nieto (1994) that is the Hessian of the Segre cubic.
Definition
Summarize
Perspective
The Barth–Nieto quintic is the closure of the set of points (x0:x1:x2:x3:x4:x5) of P5 satisfying the equations
Properties
The Barth–Nieto quintic is not rational, but has a smooth model that is a modular Calabi–Yau manifold with Kodaira dimension zero. Furthermore, it is birationally equivalent to a compactification of the Siegel modular variety A1,3(2).[1]
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.