AN/SPY-6

Active electronically scanned array radar From Wikipedia, the free encyclopedia

AN/SPY-6

The AN/SPY-6 is an active electronically scanned array (AESA)[1] 3D radar system developed and built by RTX corporation, formerly Raytheon, and in service with the United States Navy (USN).[2] It provides integrated air and missile defense for Flight III Arleigh Burke-class destroyers.[3] Variants are under development for retrofitting Flight IIA Arleigh Burkes and for installation aboard Constellation-class frigates, Gerald R. Ford-class aircraft carriers, America-class amphibious assault ships (LHA-8 and future), and San Antonio-class amphibious transport docks.

Quick Facts Country of origin, Type ...
AN/SPY-6
Thumb
AN SPY-6(V)4 (scale model) in RTX booth of JA2024 at Tokyo Big Sight October 2024
Country of originUnited States
TypeAir and missile defense active electronically scanned array 3D radar
FrequencyS band
Azimuth0–360°
ElevationHorizonzenith
Other Names
  • Air and Missile Defense Radar (AMDR)
  • Enterprise Air Surveillance Radar (EASR)
Close

The first delivery of the AN/SPY-6 to the USN took place on 20 July 2020.[4]

Development

Summarize
Perspective
Thumb
AN/SPY-6 system overview.

In October 2013, "Raytheon Company (RTN) [was] awarded an almost $386m cost-plus-incentive-fee contract for the Engineering and Manufacturing Development (EMD) phase design, development, integration, test, and delivery of Air and Missile Defense S-band Radar (AMDR-S) and Radar Suite Controller (RSC)."[5] In September 2010, the Navy awarded technology development contracts to Northrop Grumman, Lockheed Martin, and Raytheon to develop the S-band radar and radar suite controller (RSC). X-band radar development reportedly will come under separate contracts. The Navy hopes to place AMDR on Flight III Arleigh Burke-class destroyers, possibly beginning in 2016. Those ships currently mount the Aegis Combat System, produced by Lockheed Martin.[6]

In 2013, the Navy cut almost $10B from the cost of the program by adopting a smaller less capable system that will be challenged by "future threats".[7] As of 2013, the program is expected to deliver 22 radars at a total cost of almost $6.6B. They will cost $300m/unit in serial production.[8] Testing is planned for 2021 and Initial operating capability is planned for March 2023.[8]

The Navy was forced to halt the contract in response to a challenge by Lockheed.[9] Lockheed officially withdrew their protest in January 2014,[10] allowing the Navy to lift the stop work order.[11]

In March 2022, Raytheon announced a $3.2B contract to outfit every new surface ship in the US Navy with the SPY-6 family of radars.[12][13]

Technology

Summarize
Perspective

The SPY-6 system consists of two primary radars and a radar suite controller (RSC) to coordinate the sensors. An S-band radar is to provide volume search, tracking, ballistic missile defense discrimination, and missile communications, while the X-band radar is to provide horizon search, precision tracking, missile communication, and terminal illumination of targets.[6] The S-band and X-band sensors will also share functionality, including radar navigation, periscope detection, and missile guidance and communication. SPY-6 is intended as a scalable system, with each sensor array assembled from Radar Modular Assemblies (RMA), self-contained radar modules.[14]

The Arleigh Burke deckhouse can only accommodate a 4.3 m (14 ft) version, but the USN claims they need a radar of 6.1 m (20 ft) or more to meet future ballistic missile threats.[8] This would require a new ship design. Ingalls has proposed the San Antonio-class amphibious transport dock as the basis for a ballistic missile defense cruiser with 6.1 m (20 ft) SPY-6. To cut costs, the first 12 SPY-6 sets will have an X-band component based on the existing SPQ-9B rotating radar, to be replaced by a new X-band radar in set 13 that will be more capable against future threats.[8]

The transmit-receive modules will use new gallium nitride (GaN) semiconductor technology,[8] allowing for a higher power density than the previous gallium arsenide radar modules.[15] The new radar will require twice the electrical power as the previous generation, while generating over 35 times as much radar power.[16]

Although it was not an initial requirement, the SPY-6 may be capable of performing electronic attacks using its AESA antenna. Airborne AESA radar systems, like the APG-77, APG-81, and APG-79 used on the F-22 Raptor, F-35 Lightning II, and F/A-18E/F Super Hornet/EA-18G Growler, respectively, have demonstrated their capability to conduct electronic attack. All the contenders for the Navy's Next Generation Jammer used Gallium Nitride-based (GaN) transmit-receiver modules for their EW systems, which enables the possibility that the high-power GaN-based AESA radar used on Flight III ships can perform the mission. Precise beam steering could attack air and surface threats with tightly directed beams of high-powered radio waves to electronically blind aircraft, ships, and missiles.[17]

The radar is 30 times more sensitive and can simultaneously handle over 30 times the targets of the existing AN/SPY-1D(V), allowing it to counter large and complex saturation attacks.[18]

Distributed sensing software allows AN/SPY-6 to form a network of bistatic radars, where forward-deployed sensors work in receive mode, while targets are illuminated by separate transmitters at the back.[19][20]

Variants

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.