900 (nine hundred) is the natural number following 899 and preceding 901. It is the square of 30 and the sum of Euler's totient function for the first 54 positive integers. In base 10, it is a Harshad number. It is also the first number to be the square of a sphenic number.

Quick Facts ← 899 900 901 →, Cardinal ...
899 900 901
Cardinalnine hundred
Ordinal900th
(nine hundredth)
Factorization22 × 32 × 52
Divisors1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 25, 30, 36, 45, 50, 60, 75, 90, 100, 150, 180, 225, 300, 450, 900
Greek numeralϠ´
Roman numeralCM
Binary11100001002
Ternary10201003
Senary41006
Octal16048
Duodecimal63012
Hexadecimal38416
ArmenianՋ
Hebrewתת"ק / ץ
Babylonian cuneiform𒌋𒐙
Egyptian hieroglyph𓍪
Close

In other fields

900 is also:

Integers from 901 to 999

900s


910s

  • 910 = 2 × 5 × 7 × 13, Mertens function(910) returns 0, Harshad number, happy number, balanced number,[8] number of polynomial symmetric functions of matrix of order 7 under separate row and column permutations[9]
  • 911 = Sophie Germain prime number, also the emergency telephone number in North America
  • 912 = 24 × 3 × 19, sum of four consecutive primes (223 + 227 + 229 + 233), sum of ten consecutive primes (71 + 73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109), Harshad number.
  • 913 = 11 × 83, Smith number,[10] Mertens function(913) returns 0.
  • 914 = 2 × 457, nontotient, number of compositions of 11 that are neither weakly increasing nor weakly decreasing [11]
  • 915 = 3 × 5 × 61, sphenic number, Smith number,[10] Mertens function(915) returns 0, Harshad number
  • 916 = 22 × 229, Mertens function(916) returns 0, nontotient, strobogrammatic, member of the Mian–Chowla sequence[12]
  • 917 = 7 × 131, sum of five consecutive primes (173 + 179 + 181 + 191 + 193)
  • 918 = 2 × 33 × 17, Harshad number
  • 919 = prime number, cuban prime,[13] prime index prime, Chen prime, palindromic prime, centered hexagonal number,[14] Mertens function(919) returns 0

920s

930s

  • 930 = 2 × 3 × 5 × 31, pronic number[23]
  • 931 = 72 × 19; sum of three consecutive primes (307 + 311 + 313); double repdigit, 11130 and 77711; number of regular simple graphs spanning 7 vertices [24]
  • 932 = 22 × 233, number of regular simple graphs on 7 labeled nodes [25]
  • 933 = 3 × 311
  • 934 = 2 × 467, nontotient
  • 935 = 5 × 11 × 17, sphenic number, Lucas–Carmichael number,[26] Harshad number
  • 936 = 23 × 32 × 13, pentagonal pyramidal number,[27] Harshad number
  • 937 = prime number, Chen prime, star number,[28] happy number
  • 938 = 2 × 7 × 67, sphenic number, nontotient, number of lines through at least 2 points of an 8 × 8 grid of points [29]
  • 939 = 3 × 313, number of V-toothpicks after 31 rounds of the honeycomb sequence [30]

940s

950s

  • 950 = 2 × 52 × 19, nontotient, generalized pentagonal number[41]
    • one of two ISBN Group Identifiers for books published in Argentina
  • 951 = 3 × 317, centered pentagonal number[42]
    • one of two ISBN Group Identifiers for books published in Finland
  • 952 = 23 × 7 × 17, number of reduced words of length 3 in the Weyl group D_17,[43] number of regions in regular tetradecagon with all diagonals drawn. [44]
    • 952 is also 9-5-2, a card game similar to bridge.
    • one of two ISBN Group Identifiers for books published in Finland
  • 953 = prime number, Sophie Germain prime,[45] Chen prime, Eisenstein prime with no imaginary part, centered heptagonal number[46]
    • ISBN Group Identifier for books published in Croatia
  • 954 = 2 × 32 × 53, sum of ten consecutive primes (73 + 79 + 83 + 89 + 97 + 101 + 103 + 107 + 109 + 113), nontotient, Harshad number, sixth derivative of x^(x^x) at x=1.[47]
  • 955 = 5 × 191, number of transitive rooted trees with 17 nodes
    • ISBN Group Identifier for books published in Sri Lanka
  • 956 = 22 × 239, number of compositions of 13 into powers of 2.[48]
    • ISBN Group Identifier for books published in Chile
  • 957 = 3 × 11 × 29, sphenic number, antisigma(45)[49]
    • one of two ISBN Group Identifiers for books published in Taiwan and China
  • 958 = 2 × 479, nontotient, Smith number[10]
  • 959 = 7 × 137, composite de Polignac number[50]
    • ISBN Group Identifier for books published in Cuba

960s

  • 960 = 26 × 3 × 5, sum of six consecutive primes (149 + 151 + 157 + 163 + 167 + 173), Harshad number
    • country calling code for Maldives, ISBN Group Identifier for books published in Greece
    • The number of possible starting positions for the chess variant Chess960
  • 961 = 312, the largest 3-digit perfect square, sum of three consecutive primes (313 + 317 + 331), sum of five consecutive primes (181 + 191 + 193 + 197 + 199), centered octagonal number[51]
    • country calling code for Lebanon, ISBN Group Identifier for books published in Slovenia
  • 962 = 2 × 13 × 37, sphenic number, nontotient
    • country calling code for Jordan, one of two ISBN Group Identifiers for books published in Hong Kong
  • 963 = 32 × 107, sum of the first twenty-four primes
    • country calling code for Syria, ISBN Group Identifier for books published in Hungary
  • 964 = 22 × 241, sum of four consecutive primes (233 + 239 + 241 + 251), nontotient, totient sum for first 56 integers
    • country calling code for Iraq, ISBN Group Identifier for books published in Iran, happy number
  • 965 = 5 × 193
    • country calling code for Kuwait, ISBN Group Identifier for books published in Israel
  • 966 = 2 × 3 × 7 × 23 = , sum of eight consecutive primes (103 + 107 + 109 + 113 + 127 + 131 + 137 + 139), Harshad number
    • country calling code for Saudi Arabia, one of two ISBN Group Identifiers for books published in Ukraine
  • 967 = prime number, prime index prime
    • country calling code for Yemen, one of two ISBN Group Identifiers for books published in Malaysia
  • 968 = 23 × 112, nontotient, Achilles number, area of a square with diagonal 44[52]
    • country calling code for Oman, one of two ISBN Group Identifiers for books published in Mexico
  • 969 = 3 × 17 × 19, sphenic number, nonagonal number,[53] tetrahedral number[54]

970s

  • 970 = 2 × 5 × 97, sphenic number, heptagonal number
    • country calling code for Palestinian territories, one of two ISBN Group Identifiers for books published in Mexico
  • 971 = prime number, Chen prime, Eisenstein prime with no imaginary part
    • country calling code for United Arab Emirates, ISBN Group Identifier for books published in the Philippines
  • 972 = 22 × 35, Harshad number, Achilles number
    • country calling code for Israel, one of two ISBN Group Identifiers for books published in Portugal
      • The Sum of Anti-Factors of 972 = number * (n/2) where n is an Odd number. So, it is a Hemi-Anti-Perfect Number. Other such Numbers include 2692, etc.

972 has Anti-Factors = 5, 8, 24, 29, 67, 72, 216, 389, 648

Sum of Anti-Factors = 5 + 8 + 24 + 29 + 67 + 72 + 216 + 389 + 648 = 1458 = 972 * 3/2

  • 973 = 7 × 139, happy number
    • country calling code for Bahrain, ISBN Group Identifier for books published in Romania,
  • 974 = 2 × 487, nontotient, 974! - 1 is prime[55]
    • country calling code for Qatar, ISBN Group Identifier for books published in Thailand
  • 975 = 3 × 52 × 13
    • country calling code for Bhutan, ISBN Group Identifier for books published in Turkey
  • 976 = 24 × 61, decagonal number[56]
  • 977 = prime number, sum of nine consecutive primes (89 + 97 + 101 + 103 + 107 + 109 + 113 + 127 + 131), balanced prime,[39] Chen prime, Eisenstein prime with no imaginary part, Stern prime,[57] strictly non-palindromic number[58]
    • country calling code for Nepal
    • EAN prefix for ISSNs
    • ISBN Group Identifier for books published in Egypt
  • 978 = 2 × 3 × 163, sphenic number, nontotient, number of secondary structures of RNA molecules with 11 nucleotides[59]
    • First EAN prefix for ISBNs
    • ISBN Group Identifier for books published in Nigeria
  • 979 = 11 × 89, the sum of the five smallest fourth powers:
    • Second EAN prefix for ISBNs. Also for ISMNs
    • ISBN Group Identifier for books published in Indonesia

980s

990s

  • 990 = 2 × 32 × 5 × 11, sum of six consecutive primes (151 + 157 + 163 + 167 + 173 + 179), triangular number,[3] Harshad number
  • 991 = prime number, sum of five consecutive primes (191 + 193 + 197 + 199 + 211), sum of seven consecutive primes (127 + 131 + 137 + 139 + 149 + 151 + 157), Chen prime, lucky prime, prime index prime
  • 992 = 25 × 31, pronic number,[23] nontotient; number of eleven-dimensional exotic spheres.[68]
    • country calling code for Tajikistan
  • 993 = 3 × 331
    • country calling code for Turkmenistan
  • 994 = 2 × 7 × 71, sphenic number, nontotient, number of binary words of length 13 with all distinct runs.[69]
    • country calling code for Azerbaijan
  • 995 = 5 × 199
    • country calling code for Georgia
    • Singapore fire brigade and emergency ambulance services hotline, Brunei Darussalam fire service emergency number
  • 996 = 22 × 3 × 83
    • country calling code for Kyrgyzstan
  • 997 = largest three-digit prime number, strictly non-palindromic number.[58] It is also a lucky prime.
  • 998 = 2 × 499, nontotient, number of 7-node graphs with two connected components.[70]
    • country calling code for Uzbekistan

References

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.