Loading AI tools
Ethernet with speeds above 100 Gbit/s From Wikipedia, the free encyclopedia
Terabit Ethernet (TbE) is Ethernet with speeds above 100 Gigabit Ethernet. The 400 Gigabit Ethernet (400G, 400GbE) and 200 Gigabit Ethernet (200G, 200GbE)[1] standard developed by the IEEE P802.3bs Task Force using broadly similar technology to 100 Gigabit Ethernet[2][3] was approved on December 6, 2017.[4][5] On February 16, 2024 the 800 Gigabit Ethernet (800G, 800GbE) standard developed by the IEEE P802.3df Task Force was approved.[6]
The Optical Internetworking Forum (OIF) has already announced five new projects at 112 Gbit/s which would also make 4th generation (single-lane) 100 GbE links possible.[7] The IEEE P802.3df Task Force started work in January 2022 to standardize 800 Gbit/s and 1.6 Tbit/s Ethernet. [8] In November 2022 the IEEE 802.3df project objectives were split in two, with 1.6T and 200G/lane work being moved to the new IEEE 802.3dj project. The timeline for the 802.3dj project indicates completion in July 2026. [9]
Facebook and Google, among other companies, have expressed a need for TbE.[10] While a speed of 400 Gbit/s is achievable with existing technology, 1 Tbit/s (1000 Gbit/s) would require different technology.[2][11] Accordingly, at the IEEE Industry Connections Higher Speed Ethernet Consensus group meeting in September 2012, 400 GbE was chosen as the next generation goal.[2] Additional 200 GbE objectives were added in January 2016.
The University of California, Santa Barbara (UCSB) attracted help from Agilent Technologies, Google, Intel, Rockwell Collins, and Verizon Communications to help with research into next generation Ethernet.[12]
As of early 2016, chassis/modular based core router platforms from Cisco, Juniper and other major manufacturers support 400 Gbit/s full duplex data rates per slot. One, two and four port 100 GbE and one port 400 GbE line cards are presently available. As of early 2019, 200 GbE line cards became available after 802.3cd standard ratification.[13][14] In 2020 the Ethernet Technology Consortium announced a specification for 800 Gigabit Ethernet.[15]
200G Ethernet uses PAM4 signaling which allows 2 bits to be transmitted per clock cycle, but at a higher implementation cost.[16] Cisco introduced an 800G Ethernet switch in 2022.[17] In 2024, Nokia routers with 800G Ethernet were deployed.[18]
The IEEE formed the "IEEE 802.3 Industry Connections Ethernet Bandwidth Assessment Ad Hoc", to investigate the business needs for short and long term bandwidth requirements.[19][20][21]
IEEE 802.3's "400 Gb/s Ethernet Study Group" started working on the 400 Gbit/s generation standard in March 2013.[22] Results from the study group were published and approved on March 27, 2014. Subsequently, the IEEE 802.3bs Task Force[23] started working to provide physical layer specifications for several link distances.[24]
The IEEE 802.3bs standard was approved on December 6, 2017.[4]
The IEEE 802.3cd standard was approved on December 5, 2018.
The IEEE 802.3cn standard was approved on December 20, 2019.
The IEEE 802.3cm standard was approved on January 30, 2020.
The IEEE 802.3cu standard was approved on February 11, 2021.
The IEEE 802.3ck and 802.3db standards were approved on September 21, 2022.
In November 2022 the IEEE 802.3df project objectives were split in two, with 1.6T and 200G/lane work being moved to the new IEEE 802.3dj project
The IEEE 802.3df standard was approved on February 16, 2024.
Like all speeds since 10 Gigabit Ethernet, the standards support only full-duplex operation. Other objectives include:[24]
Define physical layer specifications supporting:[24]
'IEEE P802.3db 100 Gb/s, 200 Gb/s, and 400 Gb/s Short Reach Fiber Task Force'
IEEE P802.3df Objectives for 800 Gbit/s Ethernet and 400G and 800G PHYs using 100 Gbit/s lanes
Fibre type | Introduced | Performance |
---|---|---|
MMF FDDI 62.5/125 µm | 1987 | MHz·km @ 850 nm | 160
MMF OM1 62.5/125 µm | 1989 | MHz·km @ 850 nm | 200
MMF OM2 50/125 µm | 1998 | MHz·km @ 850 nm | 500
MMF OM3 50/125 µm | 2003 | 1500 MHz·km @ 850 nm |
MMF OM4 50/125 µm | 2008 | 3500 MHz·km @ 850 nm |
MMF OM5 50/125 µm | 2016 | 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm |
SMF OS1 9/125 µm | 1998 | 1.0 dB/km @ 1300/1550 nm |
SMF OS2 9/125 µm | 2000 | 0.4 dB/km @ 1300/1550 nm |
Name | Standard | Status | Media | Connector | Transceiver Module |
Reach in m |
# Media (⇆) |
# Lambdas (→) |
# Lanes (→) |
Notes |
---|---|---|---|---|---|---|---|---|---|---|
200 Gigabit Ethernet (200 GbE) (1st Generation: 25GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 8x 26.5625 GBd = 212.5 GBd - Full-Duplex) [39][40][41] | ||||||||||
200GAUI-8 | 802.3bs-2017 (CL120B/C) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 16 | N/A | 8 | PCBs |
200 Gigabit Ethernet (200 GbE) (2nd Generation: 50GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 26.5625 GBd x2 = 212.5 GBd - Full-Duplex) [39][40][41] | ||||||||||
200GAUI-4 | 802.3bs-2017 (CL120D/E) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 8 | N/A | 4 | PCBs |
200GBASE-KR4 | 802.3cd-2018 (CL137) |
current | Cu-Backplane | — | — | 1 | 8 | N/A | 4 | PCBs; total insertion loss of ≤ 30 dB at 13.28125 GHz |
200GBASE-CR4 | 802.3cd-2018 (CL136) |
current | twinaxial copper cable |
QSFP-DD, QSFP56, microQSFP, OSFP |
N/A | 3 | 8 | N/A | 4 | Data centres (in-rack) |
200GBASE-SR4 | 802.3cd-2018 (CL138) |
current | Fibre 850 nm |
MPO/MTP (MPO-12) |
QSFP56 | OM3: 70 | 8 | 1 | 4 | uses four fibers in each direction |
OM4: 100 | ||||||||||
200GBASE-DR4 | 802.3bs-2017 (CL121) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-12) |
QSFP56 | OS2: 500 | 8 | 1 | 4 | uses four fibers in each direction |
200GBASE-FR4 | 802.3bs-2017 (CL122) |
current | Fibre 1271 – 1331 nm |
LC | QSFP56 | OS2: 2k | 2 | 4 | 4 | WDM |
200GBASE-LR4 | 802.3bs-2017 (CL122) |
current | Fibre 1295.56 – 1309.14 nm |
LC | QSFP56 | OS2: 10k | 2 | 4 | 4 | WDM |
200GBASE-ER4 | 802.3cn-2019 (CL122) |
current | Fibre 1295.56 – 1309.14 nm |
LC | QSFP56 | OS2: 40k | 2 | 4 | 4 | WDM |
200 Gigabit Ethernet (200 GbE) (3rd Generation: 100GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 53.1250 GBd x2 = 212.5 GBd - Full-Duplex) [39][40][41] | ||||||||||
200GAUI-2 | 802.3ck-2022 (CL120F/G) |
current | Chip-to-chip/ Chip-to-module interface |
— | N/A | 0.25 | 4 | N/A | 2 | PCBs |
200GBASE-KR2 | 802.3ck-2022 (CL163) |
current | Cu backplane | — | — | 1 | 4 | N/A | 2 | PCBs; total insertion loss of ≤ 28 dB at 26.56 GHz |
200GBASE-CR2 | 802.3ck-2022 (CL162) |
current | twinaxial copper cable | QSFP-DD, QSFP112, SFP-DD112, DSFP, OSFP |
N/A | 2 | 4 | N/A | 2 | |
200GBASE-VR2 | 802.3db-2022 (CL167) |
current | Fiber 850 nm |
MPO (MPO-12) |
QSFP QSFP-DD SFP-DD112 |
OM3: 30 | 4 | 1 | 2 | |
OM4: 50 | ||||||||||
200GBASE-SR2 | 802.3db-2022 (CL167) |
current | Fiber 850 nm |
MPO (MPO-12) |
QSFP QSFP-DD SFP-DD112 |
OM3: 60 | 4 | 1 | 2 | |
OM4: 100 | ||||||||||
200 Gigabit Ethernet (200 GbE) (4th Generation: 200GbE-based) - (Data rate: 200 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 1x 106.25 GBd x2 = 212.5 GBd - Full-Duplex) | ||||||||||
200GAUI-1 | 802.3dj (CL176D/E) |
development | Chip-to-chip/ Chip-to-module interface |
— | N/A | 0.25 | 2 | N/A | 1 | PCBs |
200GBASE-KR1 | 802.3dj (CL178) |
development | Cu backplane | — | — | N/A | 2 | N/A | 1 | PCBs; total insertion loss of ≤ 40 dB at 53.125 GHz |
200GBASE-CR1 | 802.3dj (CL179) |
development | twinaxial copper cable | TBD | N/A | 1 | 2 | N/A | 1 | |
200GBASE-DR1 | 802.3dj (CL180) |
development | Fiber 1310 nm |
TBD | TBD | OS2: 500 | 2 | 1 | 1 | |
Fibre type | Introduced | Performance |
---|---|---|
MMF FDDI 62.5/125 µm | 1987 | MHz·km @ 850 nm | 160
MMF OM1 62.5/125 µm | 1989 | MHz·km @ 850 nm | 200
MMF OM2 50/125 µm | 1998 | MHz·km @ 850 nm | 500
MMF OM3 50/125 µm | 2003 | 1500 MHz·km @ 850 nm |
MMF OM4 50/125 µm | 2008 | 3500 MHz·km @ 850 nm |
MMF OM5 50/125 µm | 2016 | 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm |
SMF OS1 9/125 µm | 1998 | 1.0 dB/km @ 1300/1550 nm |
SMF OS2 9/125 µm | 2000 | 0.4 dB/km @ 1300/1550 nm |
Name | Standard | Status | Media | Connector | Transceiver Module |
Reach in m |
# Media (⇆) |
# λ (→) |
# Lanes (→) |
Notes |
---|---|---|---|---|---|---|---|---|---|---|
400 Gigabit Ethernet (400 GbE) (1st Generation: 25GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × NRZ - Line rate: 16x 26.5625 GBd = 425 GBd - Full-Duplex) [39] | ||||||||||
400GAUI-16 | 802.3bs-2017 (CL120B/C) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 32 | N/A | 16 | PCBs |
400GBASE-SR16 | 802.3bs-2017 (CL123) |
current | Fibre 850 nm |
MPO/MTP (MPO-32) |
CFP8 | OM3: 70 | 32 | 1 | 16 | |
OM4: 100 | ||||||||||
OM5: 100 | ||||||||||
400 Gigabit Ethernet (400 GbE) (2nd Generation: 50GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 26.5625 GBd x2 = 425.0 GBd - Full-Duplex) [39] | ||||||||||
400GAUI-8 | 802.3bs-2017 (CL 120D/E) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 16 | N/A | 8 | PCBs |
400GBASE-KR8 | proprietary (ETC) (CL120) |
current | Cu-Backplane | — | — | 1 | 8 | N/A | 8 | PCBs |
400GBASE-SR8 | 802.3cm-2020 (CL138) |
current | Fiber 850 nm |
MPO/MTP (MPO-16) |
QSFP-DD OSFP |
OM3: 70 | 16 | 1 | 8 | |
OM4: 100 | ||||||||||
OM5: 100 | ||||||||||
400GBASE-SR4.2 (Bidirectional) |
802.3cm-2020 (CL150) |
current | Fiber 850 nm 912 nm |
MPO/MTP (MPO-12) |
QSFP-DD | OM3: 70 | 8 | 2 | 8 | Bidirectional WDM |
OM4: 100 | ||||||||||
OM5: 150 | ||||||||||
400GBASE-FR8 | 802.3bs-2017 (CL122) |
current | Fibre 1273.54 – 1309.14 nm |
LC | QSFP-DD OSFP |
OS2: 2k | 2 | 8 | 8 | WDM |
400GBASE-LR8 | 802.3bs-2017 (CL122) |
current | Fibre 1273.54 – 1309.14 nm |
LC | QSFP-DD OSFP |
OS2: 10k | 2 | 8 | 8 | WDM |
400GBASE-ER8 | 802.3cn-2019 (CL122) |
current | Fibre 1273.54 – 1309.14 nm |
LC | QSFP-DD | OS2: 40k | 2 | 8 | 8 | WDM |
400 Gigabit Ethernet (400 GbE) (3rd Generation: 100GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 53.1250 GBd x2 = 425.0 GBd - Full-Duplex) [39] | ||||||||||
400GAUI-4 | 802.3ck-2022 (CL120F/G) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 8 | N/A | 4 | PCBs |
400GBASE-KR4 | 802.3ck-2022 (CL163) |
current | Cu-Backplane | — | — | 1 | 8 | N/A | 4 | PCBs; total insertion loss of ≤ 28 dB at 26.56 GHz |
400GBASE-CR4 | 802.3ck-2022 (CL162) |
current | twinaxial copper cable |
QSFP-DD, QSFP112, OSFP |
N/A | 2 | 8 | N/A | 4 | Data centres (in-rack) |
400GBASE-VR4 | 802.3db-2022 (CL167) |
current | Fibre 850 nm |
MPO (MPO-12) |
QSFP-DD | OM3: 30 | 8 | 1 | 4 | |
OM4: 50 | ||||||||||
OM5: 50 | ||||||||||
400GBASE-SR4 | 802.3db-2022 (CL167) |
current | Fibre 850 nm |
MPO (MPO-12) |
QSFP-DD | OM3: 60 | 8 | 1 | 4 | |
OM4: 100 | ||||||||||
OM5: 100 | ||||||||||
400GBASE-DR4 | 802.3bs-2017 (CL124) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-12) |
QSFP-DD OSFP |
OS2: 500 | 8 | 1 | 4 | |
400GBASE-DR4-2 | 802.3df-2024 (CL124) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-12) |
QSFP-DD OSFP |
OS2: 2k | 8 | 1 | 4 | |
400GBASE-XDR4 400GBASE-DR4+ |
proprietary (non IEEE) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-12) |
QSFP-DD OSFP |
OSx: 2k | 8 | 1 | 4 | |
400GBASE-FR4 | 802.3cu-2021 (CL151) |
current | Fibre 1271−1331 nm |
LC | QSFP-DD OSFP |
OS2: 2k | 2 | 4 | 4 | Multi-Vendor Standard[42] |
400GBASE-LR4-6 | 802.3cu-2021 (CL151) |
current | Fibre 1271−1331 nm |
LC | QSFP-DD | OS2: 6k | 2 | 4 | 4 | |
400GBASE-LR4-10 | proprietary (MSA, Sept 2020) |
current | Fibre 1271−1331 nm |
LC | QSFP-DD | OSx: 10k | 2 | 4 | 4 | Multi-Vendor Standard[43] |
400GBASE-ZR | 802.3cw (CL155/156) |
development | Fibre | LC | QSFP-DD OSFP |
OSx: 80k | 2 | 1 | 2 | 59.84375 Gigabaud (DP-16QAM) |
400 Gigabit Ethernet (400 GbE) (4th Generation: 200GbE-based) - (Data rate: 400 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 2x 106.25 GBd x2 = 425 GBd - Full-Duplex) | ||||||||||
400GAUI-2 | 802.3dj (CL176D/E) |
development | Chip-to-chip/ Chip-to-module interface |
— | N/A | 0.25 | 2 | N/A | 1 | PCBs |
400GBASE-KR2 | 802.3dj (CL178) |
development | Cu backplane | — | — | N/A | 4 | N/A | 2 | PCBs; total insertion loss of ≤ 40 dB at 53.125 GHz |
400GBASE-CR2 | 802.3dj (CL179) |
development | twinaxial copper cable | TBD | N/A | 1 | 4 | N/A | 2 | |
400GBASE-DR2 | 802.3dj (CL180) |
development | Fiber 1310 nm |
TBD | TBD | OS2: 500 | 4 | 1 | 2 | |
Fibre type | Introduced | Performance |
---|---|---|
MMF FDDI 62.5/125 µm | 1987 | MHz·km @ 850 nm | 160
MMF OM1 62.5/125 µm | 1989 | MHz·km @ 850 nm | 200
MMF OM2 50/125 µm | 1998 | MHz·km @ 850 nm | 500
MMF OM3 50/125 µm | 2003 | 1500 MHz·km @ 850 nm |
MMF OM4 50/125 µm | 2008 | 3500 MHz·km @ 850 nm |
MMF OM5 50/125 µm | 2016 | 3500 MHz·km @ 850 nm + 1850 MHz·km @ 950 nm |
SMF OS1 9/125 µm | 1998 | 1.0 dB/km @ 1300/1550 nm |
SMF OS2 9/125 µm | 2000 | 0.4 dB/km @ 1300/1550 nm |
Name | Standard | Status | Media | Connector | Transceiver Module |
Reach in m |
# Media (⇆) |
# λ (→) |
# Lanes (→) |
Notes |
---|---|---|---|---|---|---|---|---|---|---|
800 Gigabit Ethernet (800 GbE) (100GbE-based) - (Data rate: 800 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 53.1250 GBd x2 = 850 GBd - Full-Duplex) [39] | ||||||||||
800GAUI-8 | 802.3df-2024 (CL120F/G) |
current | Chip-to-chip/ Chip-to-module interface |
— | — | 0.25 | 16 | N/A | 8 | PCBs |
800GBASE-KR8 | 802.3df-2024 (CL163) |
current | Cu-Backplane | — | — | 1 | 16 | N/A | 8 | PCBs; total insertion loss of ≤ 28 dB at 26.56 GHz |
800GBASE-CR8 | 802.3df-2024 (CL162) |
current | twinaxial copper cable |
QSFP−DD800 OSFP |
N/A | 2 | 16 | N/A | 8 | Data centres (in-rack) |
800GBASE-VR8 | 802.3df-2024 (CL167) |
current | Fibre 850 nm |
MPO (MPO-16) |
QSFP-DD OSFP |
OM3: 30 | 16 | 1 | 8 | |
OM4: 50 | ||||||||||
OM5: 50 | ||||||||||
800GBASE-SR8 | 802.3df-2024 (CL167) |
current | Fibre 850 nm |
MPO (MPO-16) |
QSFP-DD OSFP |
OM3: 60 | 16 | 1 | 8 | |
OM4: 100 | ||||||||||
OM5: 100 | ||||||||||
800GBASE-DR8 | 802.3df-2024 (CL124) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-16) |
QSFP-DD OSFP |
OS2: 500 | 16 | 1 | 8 | |
800GBASE-DR8-2 | 802.3df-2024 (CL124) |
current | Fibre 1304.5 – 1317.5 nm |
MPO/MTP (MPO-16) |
QSFP-DD OSFP |
OS2: 2k | 16 | 1 | 8 | |
800 Gigabit Ethernet (800 GbE) (200GbE-based) - (Data rate: 800 Gbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 4x 106.25 GBd x2 = 850 GBd - Full-Duplex) | ||||||||||
800GAUI-4 | 802.3dj (CL176D/E) |
development | Chip-to-chip/ Chip-to-module interface |
— | N/A | 0.25 | 8 | N/A | 4 | PCBs |
800GBASE-KR4 | 802.3dj (CL178) |
development | Cu backplane | — | — | N/A | 8 | N/A | 4 | PCBs; total insertion loss of ≤ 40 dB at 53.125 GHz |
800GBASE-CR4 | 802.3dj (CL179) |
development | twinaxial copper cable | TBD | N/A | 1 | 8 | N/A | 4 | |
800GBASE-DR4 | 802.3dj (CL180) |
development | Fiber 1310 nm |
TBD | TBD | OS2: 500 | 8 | 1 | 4 | |
Name | Standard | Status | Media | Connector | Transceiver Module |
Reach in m |
# Media (⇆) |
# λ (→) |
# Lanes (→) |
Notes |
---|---|---|---|---|---|---|---|---|---|---|
1.6 Terabit Ethernet (1.6 TbE) (200GbE-based) - (Data rate: 1.6 Tbit/s - Line code: 256b/257b × RS-FEC(544,514) × PAM4 - Line rate: 8x 106.25 GBd x2 = 1700 GBd - Full-Duplex) | ||||||||||
1.6TAUI-8 | 802.3dj (CL176D/E) |
development | Chip-to-chip/ Chip-to-module interface |
— | N/A | 0.25 | 16 | N/A | 8 | PCBs |
1.6TBASE-KR8 | 802.3dj (CL178) |
development | Cu backplane | — | — | N/A | 16 | N/A | 8 | PCBs; total insertion loss of ≤ 40 dB at 53.125 GHz |
1.6TBASE-CR8 | 802.3dj (CL179) |
development | twinaxial copper cable | TBD | N/A | 1 | 16 | N/A | 8 | |
1.6TBASE-DR8 | 802.3dj (CL180) |
development | Fiber 1310 nm |
TBD | TBD | OS2: 500 | 16 | 1 | 8 | |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.