Remove ads
From Wikipedia, the free encyclopedia
In the mathematical subject of geometric group theory, the Švarc–Milnor lemma (sometimes also called Milnor–Švarc lemma, with both variants also sometimes spelling Švarc as Schwarz) is a statement which says that a group , equipped with a "nice" discrete isometric action on a metric space , is quasi-isometric to .
This result goes back, in different form, before the notion of quasi-isometry was formally introduced, to the work of Albert S. Schwarz (1955)[1] and John Milnor (1968).[2] Pierre de la Harpe called the Švarc–Milnor lemma "the fundamental observation in geometric group theory"[3] because of its importance for the subject. Occasionally the name "fundamental observation in geometric group theory" is now used for this statement, instead of calling it the Švarc–Milnor lemma; see, for example, Theorem 8.2 in the book of Farb and Margalit.[4]
Several minor variations of the statement of the lemma exist in the literature. Here we follow the version given in the book of Bridson and Haefliger (see Proposition 8.19 on p. 140 there).[5]
Let be a group acting by isometries on a proper length space such that the action is properly discontinuous and cocompact.
Then the group is finitely generated and for every finite generating set of and every point the orbit map
is a quasi-isometry.
Here is the word metric on corresponding to .
Sometimes a properly discontinuous cocompact isometric action of a group on a proper geodesic metric space is called a geometric action.[6]
Recall that a metric space is proper if every closed ball in is compact.
An action of on is properly discontinuous if for every compact the set
is finite.
The action of on is cocompact if the quotient space , equipped with the quotient topology, is compact. Under the other assumptions of the Švarc–Milnor lemma, the cocompactness condition is equivalent to the existence of a closed ball in such that
For Examples 1 through 5 below see pp. 89–90 in the book of de la Harpe.[3] Example 6 is the starting point of the part of the paper of Richard Schwartz.[7]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.