Loading AI tools
From Wikipedia, the free encyclopedia
{{{{{1}}}|{{{2}}}|
|Ub-name=Apeirogonal hosohedron |Ub-image=Apeirogonal hosohedron.svg| |Ub-image2=| |Ub-imagecaption= |Ub-vfigimage=| |Ub-dimage=Apeirogonal tiling.svg| |Ub-vfig=2∞| |Ub-ffig=V∞2| |Ub-Wythoff= ∞ | 2 2| |Ub-rotgroup=[∞,2]+, (∞22)| |Ub-group=[∞,2], (*∞22)| |Ub-special=| |Ub-B=?| |Ub-schl={2,∞}| |Ub-dual=Order-2 apeirogonal tiling |Ub-CD=
|Ua-name=Apeirogonal tiling
|Ua-image=Apeirogonal tiling.svg|
|Ua-image2=Apeirogonal tiling.svg|
|Ua-imagecaption=
|Ua-vfigimage=|
|Ua-dimage=Apeirogonal hosohedron.svg|
|Ua-vfig=∞.∞|
|Ua-ffig=V2.2.2...|
|Ua-Wythoff= 2 | ∞ 2
2 2 | ∞|
|Ua-rotgroup=[∞,2]+, (∞22)|
|Ua-group=[∞,2], (*∞22)|
|Ua-special=|
|Ua-B=?|
|Ua-schl={∞,2}|
|Ua-dual=Apeirogonal hosohedron
|Ua-CD=
|Uainfin-name=Uniform apeirogonal antiprism|
|Uainfin-image=Infinite antiprism.svg|
|Uainfin-image2=Infinite antiprism.svg|
|Uainfin-imagecaption=
|Uainfin-vfigimage=Infinite antiprism verf.svg|
|Uainfin-dimage=Apeirogonal dipyramid.svg|
|Uainfin-vfig=3.3.3.∞|
|Uainfin-Wythoff= | 2 2 ∞
|Uainfin-rotgroup=[∞,2]+, (∞22)|
|Uainfin-group=[∞,2+], (∞22)|
|Uainfin-special=|
|Uainfin-B=Azap|
|Uainfin-schl=sr{2,∞} or |
|Uainfin-dual=Apeirogonal deltohedron|
|Uainfin-CD=
|Uinfin-name=Apeirogonal prism|
|Uinfin-image=Infinite_prism.svg|
|Uinfin-image2=Infinite_prism.svg|
|Uinfin-imagecaption=
|Uinfin-vfigimage=Infinite prism verf.svg|
|Uinfin-dimage=?|
|Uinfin-vfig=4.4.∞|
|Uinfin-Wythoff= 2 ∞ | 2
|Uinfin-rotgroup=[∞,2]+, (∞22)|
|Uinfin-group=[∞,2], (*∞22)|
|Uinfin-special=|
|Uinfin-B=Azip|
|Uinfin-schl=t{2,∞}|
|Uinfin-dual=Apeirogonal bipyramid|
|Uinfin-CD=
|Us-name=Square tiling|
|Us-name2=quadrille|
|Us-image=Tiling 4a simple.svg|
|Us-image2=Uniform tiling 44-t0.png|
|Us-imagecaption=
|Us-vfigimage=Tiling 4a vertfig.svg|
|Us-dfaceimage=Tiling 4a dual face.svg|
|Us-dimage=Tiling 4b simple.svg|
|Us-vfig=4.4.4.4 (or 44)|
|Us-ffig=V4.4.4.4 (or V44)|
|Us-Wythoff= 4 | 2 4
|Us-rotgroup=p4, [4,4]+, (442)|
|Us-group=p4m, [4,4], (*442)|
|Us-special=|
|Us-B=Squat|
|Us-schl={4,4}
{∞}×{∞}|
|Us-dual=self-dual|
|Us-dual2=quadrille|
|Us-CD=
|Uts-name=Truncated square tiling|
|Uts-name2=truncated quadrille|
|Uts-image=Tiling truncated 4a simple.svg|
|Uts-image2=Uniform tiling 44-t01.png|
|Uts-imagecaption=
|Uts-vfigimage=Tiling truncated 4a vertfig.svg|
|Uts-dfaceimage=Tiling truncated 4a dual face.svg|
|Uts-dimage=Tiling truncated 4a dual simple.svg|
|Uts-vfig=4.8.8|
|Uts-Wythoff= 2 | 4 4
4 4 2 ||
|Uts-rotgroup=p4, [4,4]+, (442)|
|Uts-group=p4m, [4,4], (*442)|
|Uts-special=|
|Uts-B=Tosquat|
|Uts-schl=t{4,4}
tr{4,4} or |
|Uts-dual=Tetrakis square tiling|
|Uts-dual2=kisquadrille|
|Uts-CD=
or
|Uns-name=Snub square tiling|
|Uns-name2=snub quadrille|
|Uns-image=Tiling snub 4-4 left simple.svg|
|Uns-image2=Uniform tiling 44-snub.png|
|Uns-imagecaption=
|Uns-vfigimage=Tiling snub 4-4 left vertfig.svg|
|Uns-dfaceimage=Tiling snub 4-4 left dual face.svg|
|Uns-dimage=Tiling snub 4-4 left dual simple.svg|
|Uns-vfig=3.3.4.3.4|
|Uns-Wythoff= | 4 4 2 |
|Uns-rotgroup=p4, [4,4]+, (442)|
|Uns-group=p4g, [4+,4], (4*2)|
|Uns-special=|
|Uns-B=Snasquat|
|Uns-schl=s{4,4}
sr{4,4} or |
|Uns-dual=Cairo pentagonal tiling|
|Uns-dual2=4-fold pentille|
|Uns-CD=
or
|Uh-name=Hexagonal tiling|
|Uh-name2=hextille|
|Uh-image=Tiling 6 simple.svg|
|Uh-image2=Uniform tiling 63-t0.png|
|Uh-imagecaption=
|Uh-vfigimage=Tiling 6 vertfig.svg|
|Uh-dfaceimage=Tiling 6 dual face.svg|
|Uh-dimage=Tiling 3 simple.svg|
|Uh-vfig=6.6.6 (or 63)|
|Uh-ffig=V3.3.3.3.3.3 (or V36)|
|Uh-Wythoff= 3 | 6 2
2 6 | 3
3 3 3 ||
|Uh-rotgroup=p6, [6,3]+, (632)|
|Uh-group=p6m, [6,3], (*632)|
|Uh-special=|
|Uh-B=Hexat|
|Uh-schl={6,3}
t{3,6}|
|Uh-dual=Triangular tiling|
|Uh-dual2=deltille|
|Uh-CD=
|Ut-name=Triangular tiling|
|Ut-name2=deltille|
|Ut-image=Tiling 3 simple.svg|
|Ut-image2=Uniform tiling 63-t2.png|
|Ut-imagecaption=
|Ut-vfigimage=Tiling 3 vertfig.svg|
|Ut-dfaceimage=Tiling 3 dual face.svg|
|Ut-dimage=Tiling 6 simple.svg|
|Ut-vfig=3.3.3.3.3.3 (or 36)|
|Ut-ffig=V6.6.6 (or V63)|
|Ut-Wythoff= 6 | 3 2
3 | 3 3
| 3 3 3|
|Ut-rotgroup=p6, [6,3]+, (632)
p3, [3[3]]+, (333)|
|Ut-group=p6m, [6,3], (*632)|
|Ut-special=|
|Ut-B=Trat|
|Ut-schl={3,6}
{3[3]}|
|Ut-dual=Hexagonal tiling|
|Ut-dual2=hextille|
|Ut-CD=
=
|Uth-name=Truncated hexagonal tiling| |Uth-name2=truncated hextille| |Uth-image=Tiling truncated 6 simple.svg| |Uth-image2=Uniform tiling 63-t01.png| |Uth-imagecaption= |Uth-vfigimage=Tiling truncated 6 vertfig.svg| |Uth-dfaceimage=Tiling truncated 6 dual face.svg| |Uth-dimage=Tiling truncated 6 dual simple.svg| |Uth-vfig=3.12.12| |Uth-Wythoff= 2 3 | 6| |Uth-rotgroup=p6, [6,3]+, (632) |Uth-group=p6m, [6,3], (*632)| |Uth-special=| |Uth-B=Toxat| |Uth-schl=t{6,3}| |Uth-dual=Triakis triangular tiling| |Uth-dual2=kisdeltille| |Uth-CD=
|Uht-name=Trihexagonal tiling|
|Uht-name2=hexadeltille|
|Uht-image=Tiling 3-6 simple.svg|
|Uht-image2=Uniform tiling 63-t1.png|
|Uht-imagecaption=
|Uht-vfigimage=Tiling 3-6 vertfig.svg|
|Uht-dfaceimage=Tiling 3-6 dual face.svg|
|Uht-dimage=Tiling 3-6 dual simple.svg|
|Uht-vfig=(3.6)2|
|Uht-Wythoff= 2 | 6 3
3 3 | 3|
|Uht-rotgroup=p6, [6,3]+, (632)
p3, [3[3]]+, (333)
|Uht-group=p6m, [6,3], (*632)|
|Uht-special=Edge-transitive|
|Uht-B=That|
|Uht-schl=r{6,3} or
h2{6,3}|
|Uht-dual=Rhombille tiling|
|Uht-dual2=rhombille|
|Uht-CD=
=
|Urth-name=Rhombitrihexagonal tiling| |Urth-name2=rhombihexadeltille| |Urth-image=Tiling small rhombi 3-6 simple.svg| |Urth-image2=Uniform tiling 63-t02.png| |Urth-imagecaption= |Urth-vfigimage=Tiling small rhombi 3-6 vertfig.svg| |Urth-dfaceimage=Tiling small rhombi 3-6 dual face.svg| |Urth-dimage=Tiling small rhombi 3-6 dual simple.svg| |Urth-vfig=3.4.6.4| |Urth-Wythoff= 3 | 6 2| |Urth-rotgroup=p6, [6,3]+, (632)| |Urth-group=p6m, [6,3], (*632)| |Urth-special=| |Urth-B=Rothat| |Urth-schl=rr{6,3} or | |Urth-dual=Deltoidal trihexagonal tiling| |Urth-dual2=tetrille| |Urth-CD=
|Ugrth-name=Truncated trihexagonal tiling| |Ugrth-name2=truncated hexadeltille| |Ugrth-image=Tiling great rhombi 3-6 simple.svg| |Ugrth-image2=Uniform tiling 63-t012.png| |Ugrth-imagecaption= |Ugrth-vfigimage=Tiling great rhombi 3-6 vertfig.svg| |Ugrth-dfaceimage=Tiling great rhombi 3-6 dual face.svg| |Ugrth-dimage=Tiling great rhombi 3-6 dual simple.svg| |Ugrth-vfig=4.6.12| |Ugrth-Wythoff= 2 6 3 || |Ugrth-rotgroup=p6, [6,3]+, (632)| |Ugrth-group=p6m, [6,3], (*632)| |Ugrth-special=| |Ugrth-B=Othat| |Ugrth-schl=tr{6,3} or | |Ugrth-dual=Kisrhombille tiling| |Ugrth-dual2=kisrhombille| |Ugrth-CD=
|Unh-name=Snub trihexagonal tiling| |Unh-name2=snub hextille| |Unh-image=Tiling snub 3-6 left simple.svg| |Unh-image2=Uniform tiling 63-snub.png| |Unh-imagecaption= |Unh-vfigimage=Tiling snub 3-6 left vertfig.svg| |Unh-dfaceimage=Tiling snub 3-6 left dual face.svg| |Unh-dimage=Tiling snub 3-6 left dual simple.svg| |Unh-vfig=3.3.3.3.6| |Unh-Wythoff= | 6 3 2| |Unh-rotgroup=p6, [6,3]+, (632)| |Unh-group=p6, [6,3]+, (632)| |Unh-special=chiral| |Unh-B=Snathat| |Unh-schl=sr{6,3} or | |Unh-dual=Floret pentagonal tiling| |Unh-dual2=6-fold pentille| |Unh-CD=
|Uet-name=Elongated triangular tiling|
|Uet-name2=isosnub quadrille|
|Uet-image=Tiling elongated 3 simple.svg|
|Uet-imagecaption=
|Uet-vfigimage=Tiling elongated 3 vertfig.svg|
|Uet-dfaceimage=Tiling elongated 3 dual face.svg|
|Uet-dimage=Tiling elongated 3 dual simple.svg|
|Uet-vfig=3.3.3.4.4|
|Uet-Wythoff= 2 | 2 (2 2)|
|Uet-rotgroup=p2, [∞,2,∞]+, (2222)|
|Uet-group=cmm, [∞,2+,∞], (2*22)|
|Uet-special=|
|Uet-B=Etrat|
|Uet-schl={3,6}:e
s{∞}h1{∞}|
|Uet-dual=Prismatic pentagonal tiling|
|Uet-dual2=iso(4-)pentille|
|Uet-CD=
}}
Tables:
Database:
Info- and navboxes:
Other:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.