Loading AI tools
From Wikipedia, the free encyclopedia
This article is rated C-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | ||||||||||||||||||||||||||||||||||||||||||||||||
|
~What does f in
stand for? It's just a typo, isn't it? Ocolon 17:37, 21 February 2007 (UTC)
Seems like there is still a factor of 2 missing in arguments on the main page - should be 2\pi f everywhere, not \pi f (but this discussion page has it right!) e.g. sin(2\pi ft) + 1/3 sin(3(2\pi ft))... would look prettier with \omegas Bdb112 (talk) 21:13, 27 July 2011 (UTC)
Hello, I'm wondering, Where did the animations showing the 25th harmonic of the square wave come from?
From the article:
Which is it? Almost impossible, or impossible? This paragraph is confused, and a clearer treatment is needed, if we are to state that square waves are unphysical. In particular, a simple square wave does not have infinite energy: it has the same energy as a DC signal of the same amplitude. What is infeasible is the infinite bandwidth. -- The Anome 08:51, 23 Sep 2003 (UTC)
Impossible, now you mention it; sorry my brain's been trying to get back into gear again :) Dysprosia
I added some other definitions. Someone should check that:
I guess these are technically "rectangular pulse trains"... - Omegatron July 2, 2005 02:53 (UTC)
what's the use of square wave?
If the question was, "What is the use of square waves?," they can be used in beacon-type signals employed in radar and time domain reflectometry. In radar the pulses of known waveform are radiated and the characteristics of their reflections off target objects give much physical information of the objects. Used in TDR, the square wave is sent down one end of a transmission line or conductor(s). The observed, resultant waveforms will include reflections and divulge many details of the line and its termination. This may include the physical characteristics of the line and termination -- faults, anomalies, discontinuities, etc.
DonL (talk) 09:00, 23 April 2012 (UTC)
I made an image. I was just experimenting, trying some things based off of Image:Haar wavelet.png. Considering that a square wave can have any frequency, DC offset, amplitude, phase, and discontinuity value and still be considered a square wave, I don't know how useful it actually is, since it sort of implies that those things are fixed. - Omegatron 19:58, July 22, 2005 (UTC)
I could make a more generalized one very easily. - Omegatron 20:00, July 22, 2005 (UTC)
"However, circuits using sine waves tend to consume more power, so square waves are used wherever possible."
My reasoning is that square wave clocks are generated by CMOS devices that are either fully on or fully off, so there is little power dissipation in the output transistors. Sine waves have to be generated and buffered by linear devices, which use more power. It's like the difference between Class A (linear) and Class D (PWM) audio amplifiers. I'm sure you know what I mean. However, I just looked at the specs of some square and sine wave clock oscillators, and to my surprise the sines were no more power-hungry than the squares. Perhaps my intuition was wrong. I'll have to look further into this. --Heron 21:44, 22 July 2005 (UTC)
It looks as if there is no clear winner in the power stakes, so I removed the relevant sentence from the article. I was trying to explain why most circuits use square clocks and not sinusoidal ones, but I picked the wrong reason. The true reason is probably complexity: a square wave oscillator can be made of just a CMOS inverter and a crystal , and a clock buffer can be just a non-inverting logic gate; while sine wave clock oscillators are specialised devices, and I can't find any references to monolithic sine wave clock buffers. --Heron 12:08, 23 July 2005 (UTC)
Oh no, I didn't mean that sine wave clocks are accidental. Some devices, like the ADCs I mentioned, explicitly support differential sine wave clocks, and you can buy sine wave clock generators to drive them. They are available from all good oscillator suppliers (like this one) and come in leaded and SMT packages that look like square-wave crystal oscillators. My point is that this is all too expensive for the average digital circuit, so designers stick to square waves where possible.
I notice we have an article on clock signals, so I'll put some information there once I get it sorted out in my mind. --Heron 14:07, 23 July 2005 (UTC)
Sine waves don't in general consume more power than square, but they can sometimes, depending on how they're generated. If you have a constant 5 Volt DC source, and want to output a 5 V square wave, you just put a switch that will be either off or on at any given time. The power consumed by a component is the product of the current passing through it and the voltage drop across it. The power consumed by the switch is ideally zero, because either it is on (no voltage across), or off (no current through), so the DC supply can be efficiently converted into a square wave with no waste. On the other hand, you can create a sine wave by putting a variable resistor in front of the DC source and turning the knob back and forth. However, this will waste a lot of power, because there will be current flowing through the resistor at the same time as there is a voltage drop across it. Many digital-to-analog conversion schemes work this way (with a computer adjusting a variable resistor to create an analog output), and so it isn't very power-efficient. But a sine wave can be efficiently created essentially by taking a square wave and filtering out high-frequency components. Ideal inductors and capacitors consume no power on average, and so a square wave passed through an LC filter will efficiently make a sine wave.
The catch is, if you want to create a square wave of any frequency, all you have to do is change the switching frequency. But if you wanted to use the efficient approach to a sine wave, you'd have to change the LC filter frequency, which is sometimes hard to do (at least over a wide range). So most of the time, when switching power signals, switching the signal fully on / fully off (as in a square wave, or PWM) will usually be more efficient than switching in an "analog" way (gradually off / gradually on). JB Gnome (talk) 23:58, 23 February 2013 (UTC)
I heard this kind of wave was used a lot in old video game systems (Game boys). Should this be mentioned in the article?
Also, I'm looking for a sound editor that allows for easy editing of square waves to make a melody (like was in game boy games). Anybody know where I can find one, and should it be posted under External Links? 71.0.241.224 01:59, 15 March 2007 (UTC)
Audacity is a good free program. Don't know many others. 24.205.34.217 18:58, 21 April 2007 (UTC)
how about the x'th root of sin(x) where x is odd? I've fooled around with the trig functions before on my TI 84 and noticed that as x gets higher and higher, the graph looks more and more like a sine wave. VentusIgnis 20:31, 18 June 2007 (UTC)
When I listen to the two sound examples provided, I can't hear that the 3500 Hz tone has higher frequency than the 1000 Hz tone. It sounds the other way, but I know the actual frequencies are correct. Maybe this artifact is because the frequencies are rather high, and because they are compressed with ogg vorbis. (I assume it's vorbis, since the container format is ogg). Lossy compression formats are not optimized for square waves, but for speech and music. It would be better to (1) lower the frequency to, say, 440 Hz and 1320 Hz and (2) use a non-lossy format such as wav. The duration can be lowered, since 5 seconds of high amplitude square wave is quite annoying. HelgeStenstrom (talk) 15:53, 13 March 2010 (UTC)
I don't really have the ability to fix the image, but hopefully someone who does will read this post. I'm pretty sure that the amplitudes of the frequencies in the frequency spectrum are incorrect. For a square wave with amplitude of 1, The amplitude of the fundamental should be 1.273 ( 4/π to be specific) — Preceding unsigned comment added by GuitarJoe48 (talk • contribs) 03:27, 28 January 2011 (UTC)
An easy fix would be to describe them as relative amplitude in the caption. However, what I'm puzzled by is the horizontal scale. I t seems to label the fundamental as 62 and the highest harmonic as 0.Chrsull (talk) 14:46, 24 May 2011 (UTC)
You may want to mention that the Fourier series for a squarewave made with sine waves is as described (essentially 1 + 1/3 + 1/5 + 1/7 + 1/9 + 1/11...), but if the squarewave is made using cosines, the series is (essentially) 1 -1/3 + 1/5 -1/7 +1/9 -1/11..., alternating signs like this. 71.139.165.48 (talk) 06:16, 2 December 2012 (UTC)
Trying to use this page as a reference, I found the following issues :
I do not have enough time to fix this myself, so if someone reads this, please make the surgery! Mathieu Perrin (talk) 09:24, 26 September 2014 (UTC)
would some one explain 4/π in the equation s(t) = (4/π) [ (sin(2πft) + (1/3) x sin(2π(3f)t)+.......]. Why 4/π does not change by adding more signals in the equation
Please add spectrum of square wave in frequency domain tooAt Last ... (talk) 10:17, 24 November 2016 (UTC)
Another definition of a square wave could be:
where denotes the arctangent function. As grows larger, reaches farther out in the domain of , and thus the transition from to of the outer arctangent function becomes sharper and sharper (since is bounded by the two horizontal asymptotes ). Dividing this by normalizes the maximum and minimum values to ±1. Thus, it approximates the discontinuous jump between 1 and -1 in the square wave, and this approximation can be made arbitrarily close to the square wave by letting .
Not adding this to the article just yet because this probably falls under WP:OR.—Tetracube (talk) 17:33, 7 July 2017 (UTC)
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.