In geometry, the snub tetraapeirogonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of sr{∞,4}.

Snub tetraapeirogonal tiling
Snub tetraapeirogonal tiling
Poincaré disk model of the hyperbolic plane
TypeHyperbolic uniform tiling
Vertex configuration3.3.4.3.
Schläfli symbolsr{,4} or
Wythoff symbol| 4 2
Coxeter diagram or
Symmetry group[,4]+, (42)
DualOrder-4-infinite floret pentagonal tiling
PropertiesVertex-transitive Chiral

Images

Drawn in chiral pairs, with edges missing between black triangles:

ThumbThumb

The snub tetrapeirogonal tiling is last in an infinite series of snub polyhedra and tilings with vertex figure 3.3.4.3.n.

More information Symmetry 4n2, Spherical ...
4n2 symmetry mutations of snub tilings: 3.3.4.3.n
Symmetry
4n2
Spherical Euclidean Compact hyperbolic Paracomp.
242 342 442 542 642 742 842 42
Snub
figures
Config. 3.3.4.3.2 3.3.4.3.3 3.3.4.3.4 3.3.4.3.5 3.3.4.3.6 3.3.4.3.7 3.3.4.3.8 3.3.4.3.
Gyro
figures
Config. V3.3.4.3.2 V3.3.4.3.3 V3.3.4.3.4 V3.3.4.3.5 V3.3.4.3.6 V3.3.4.3.7 V3.3.4.3.8 V3.3.4.3.
Close
More information Dual figures, Alternations ...
Paracompact uniform tilings in [,4] family
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
{,4} t{,4} r{,4} 2t{,4}=t{4,} 2r{,4}={4,} rr{,4} tr{,4}
Dual figures
Thumb Thumb Thumb Thumb Thumb Thumb Thumb
V4 V4.. V(4.)2 V8.8. V4 V43. V4.8.
Alternations
[1+,,4]
(*44)
[+,4]
(*2)
[,1+,4]
(*22)
[,4+]
(4*)
[,4,1+]
(*2)
[(,4,2+)]
(2*2)
[,4]+
(42)

=

=
h{,4} s{,4} hr{,4} s{4,} h{4,} hrr{,4} s{,4}
Thumb Thumb Thumb Thumb
Alternation duals
Thumb Thumb
V(.4)4 V3.(3.)2 V(4..4)2 V3..(3.4)2 V V.44 V3.3.4.3.
Close

See also

References

  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.


Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.