Loading AI tools
Function which is integratable on its domain From Wikipedia, the free encyclopedia
In mathematics, a locally integrable function (sometimes also called locally summable function)[1] is a function which is integrable (so its integral is finite) on every compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to Lp spaces, but its members are not required to satisfy any growth restriction on their behavior at the boundary of their domain (at infinity if the domain is unbounded): in other words, locally integrable functions can grow arbitrarily fast at the domain boundary, but are still manageable in a way similar to ordinary integrable functions.
Definition 1.[2] Let Ω be an open set in the Euclidean space and f : Ω → be a Lebesgue measurable function. If f on Ω is such that
i.e. its Lebesgue integral is finite on all compact subsets K of Ω,[3] then f is called locally integrable. The set of all such functions is denoted by L1,loc(Ω):
where denotes the restriction of f to the set K.
The classical definition of a locally integrable function involves only measure theoretic and topological[4] concepts and can be carried over abstract to complex-valued functions on a topological measure space (X, Σ, μ):[5] however, since the most common application of such functions is to distribution theory on Euclidean spaces,[2] all the definitions in this and the following sections deal explicitly only with this important case.
Definition 2.[6] Let Ω be an open set in the Euclidean space . Then a function f : Ω → such that
for each test function φ ∈ C ∞
c (Ω) is called locally integrable, and the set of such functions is denoted by L1,loc(Ω). Here C ∞
c (Ω) denotes the set of all infinitely differentiable functions φ : Ω → with compact support contained in Ω.
This definition has its roots in the approach to measure and integration theory based on the concept of continuous linear functional on a topological vector space, developed by the Nicolas Bourbaki school:[7] it is also the one adopted by Strichartz (2003) and by Maz'ya & Shaposhnikova (2009, p. 34).[8] This "distribution theoretic" definition is equivalent to the standard one, as the following lemma proves:
Lemma 1. A given function f : Ω → is locally integrable according to Definition 1 if and only if it is locally integrable according to Definition 2, i.e.
If part: Let φ ∈ C ∞
c (Ω) be a test function. It is bounded by its supremum norm ||φ||∞, measurable, and has a compact support, let's call it K. Hence
by Definition 1.
Only if part: Let K be a compact subset of the open set Ω. We will first construct a test function φK ∈ C ∞
c (Ω) which majorises the indicator function χK of K.
The usual set distance[9] between K and the boundary ∂Ω is strictly greater than zero, i.e.
hence it is possible to choose a real number δ such that Δ > 2δ > 0 (if ∂Ω is the empty set, take Δ = ∞). Let Kδ and K2δ denote the closed δ-neighborhood and 2δ-neighborhood of K, respectively. They are likewise compact and satisfy
Now use convolution to define the function φK : Ω → by
where φδ is a mollifier constructed by using the standard positive symmetric one. Obviously φK is non-negative in the sense that φK ≥ 0, infinitely differentiable, and its support is contained in K2δ, in particular it is a test function. Since φK(x) = 1 for all x ∈ K, we have that χK ≤ φK.
Let f be a locally integrable function according to Definition 2. Then
Since this holds for every compact subset K of Ω, the function f is locally integrable according to Definition 1. □
Definition 3.[10] Let Ω be an open set in the Euclidean space and f : Ω → be a Lebesgue measurable function. If, for a given p with 1 ≤ p ≤ +∞, f satisfies
i.e., it belongs to Lp(K) for all compact subsets K of Ω, then f is called locally p-integrable or also p-locally integrable.[10] The set of all such functions is denoted by Lp,loc(Ω):
An alternative definition, completely analogous to the one given for locally integrable functions, can also be given for locally p-integrable functions: it can also be and proven equivalent to the one in this section.[11] Despite their apparent higher generality, locally p-integrable functions form a subset of locally integrable functions for every p such that 1 < p ≤ +∞.[12]
Apart from the different glyphs which may be used for the uppercase "L",[13] there are few variants for the notation of the set of locally integrable functions
Theorem 1.[14] Lp,loc is a complete metrizable space: its topology can be generated by the following metric:
where {ωk}k≥1 is a family of non empty open sets such that
In references (Gilbarg & Trudinger 2001, p. 147), (Maz'ya & Poborchi 1997, p. 5), (Maz'ja 1985, p. 6) and (Maz'ya 2011, p. 2), this theorem is stated but not proved on a formal basis:[15] a complete proof of a more general result, which includes it, is found in (Meise & Vogt 1997, p. 40).
Theorem 2. Every function f belonging to Lp(Ω), 1 ≤ p ≤ +∞, where Ω is an open subset of , is locally integrable.
Proof. The case p = 1 is trivial, therefore in the sequel of the proof it is assumed that 1 < p ≤ +∞. Consider the characteristic function χK of a compact subset K of Ω: then, for p ≤ +∞,
where
Then for any f belonging to Lp(Ω), by Hölder's inequality, the product fχK is integrable i.e. belongs to L1(Ω) and
therefore
Note that since the following inequality is true
the theorem is true also for functions f belonging only to the space of locally p-integrable functions, therefore the theorem implies also the following result.
Corollary 1. Every function in , , is locally integrable, i. e. belongs to .
Note: If is an open subset of that is also bounded, then one has the standard inclusion which makes sense given the above inclusion . But the first of these statements is not true if is not bounded; then it is still true that for any , but not that . To see this, one typically considers the function , which is in but not in for any finite .
Theorem 3. A function f is the density of an absolutely continuous measure if and only if .
The proof of this result is sketched by (Schwartz 1998, p. 18). Rephrasing its statement, this theorem asserts that every locally integrable function defines an absolutely continuous measure and conversely that every absolutely continuous measures defines a locally integrable function: this is also, in the abstract measure theory framework, the form of the important Radon–Nikodym theorem given by Stanisław Saks in his treatise.[16]
Locally integrable functions play a prominent role in distribution theory and they occur in the definition of various classes of functions and function spaces, like functions of bounded variation. Moreover, they appear in the Radon–Nikodym theorem by characterizing the absolutely continuous part of every measure.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.