Top Qs
Timeline
Chat
Perspective

Organelle

Specialized subunit within a cell From Wikipedia, the free encyclopedia

Remove ads

In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name organelle comes from the idea that these structures are parts of cells, as organs are to the body, hence organelle, the suffix -elle being a diminutive. Organelles are either separately enclosed within their own lipid bilayers (also called membrane-bounded organelles) or are spatially distinct functional units without a surrounding lipid bilayer (non-membrane bounded organelles). Although most organelles are functional units within cells, some functional units that extend outside of cells are often termed organelles, such as cilia, the flagellum and archaellum, and the trichocyst (these could be referred to as membrane bound in the sense that they are attached to (or bound to) the membrane).

Quick Facts Details, Pronunciation ...

Organelles are identified by microscopy, and can also be purified by cell fractionation. There are many types of organelles, particularly in eukaryotic cells. They include structures that make up the endomembrane system (such as the nuclear envelope, endoplasmic reticulum, and Golgi apparatus), and other structures such as mitochondria and plastids. While prokaryotes do not possess eukaryotic organelles, some do contain protein-shelled bacterial microcompartments, which are thought to act as primitive prokaryotic organelles;[1] and there is also evidence of other membrane-bounded structures.[2] Also, the prokaryotic flagellum which protrudes outside the cell, and its motor, as well as the largely extracellular pilus, are often spoken of as organelles.

Remove ads

History and terminology

Summarize
Perspective
Quick Facts Cell biology ...

In biology, organs are defined as confined functional units within an organism.[3] The analogy of bodily organs to microscopic cellular substructures is obvious, as from even early works, authors of respective textbooks rarely elaborate on the distinction between the two.

In the 1830s, Félix Dujardin refuted Ehrenberg's theory that microorganisms have the same organs as multicellular animals, only smaller.[4]

Credited as the first[5][6][7] to use a diminutive of organ (i.e., little organ) for cellular structures was German zoologist Karl August Möbius (1884), who used the term organula (plural of organulum, the diminutive of Latin organum).[8] In a footnote, which was published as a correction in the next issue of the journal, he justified his suggestion to call organs of unicellular organisms "organella" since they are only differently formed parts of one cell, in contrast to multicellular organs of multicellular organisms.[8][9]

Remove ads

Types

Summarize
Perspective

In the broadest definition, an organelle is any part of the cell that acts as a distinct functional unit.[10] This includes membrane-bounded as well as non-membrane-bounded organelles.[11] In a more restrictive definition, only membrane-bounded ones are included. In the most restrictive definition, only the endosymbiotic membrane-bounded ones are included.[12]

The membrane-bounded organelles include the endosymbiotic organelles (mitochondria and plastids)[13] and components formed by the endomembrane system such as the lysosome. An endomembrane system and mitochondria are found in almost all eukaryotes. Plants, algae, and some protists additionally have chloroplasts. A very small minority of bacteria also have a sort-of endomembrane system.[14][15]

The non-membrane bounded organelles, also called large biomolecular complexes, are large assemblies of macromolecules that carry out particular and specialized functions, but they lack membrane boundaries. Many of these are referred to as "proteinaceous organelles" as their main structure is made of proteins.[16] Such cell structures include:

The mechanisms by which such non-membrane bounded organelles form and retain their spatial integrity have been likened to liquid-liquid phase separation.[17]

Remove ads

Eukaryotic organelles

Summarize
Perspective

Eukaryotic cells are structurally complex, and by definition are organized, in part, by interior compartments that are themselves enclosed by lipid membranes that resemble the outermost cell membrane. The larger organelles, such as the nucleus and vacuoles, are easily visible with the light microscope. They were among the first biological discoveries made after the invention of the microscope.

Not all eukaryotic cells have each of the organelles listed below. Exceptional organisms have cells that do not include some organelles (such as mitochondria) that might otherwise be considered universal to eukaryotes.[18] The several plastids including chloroplasts are distributed among some but not all eukaryotes.

There are also occasional exceptions to the number of membranes surrounding organelles, listed in the tables below (e.g., some that are listed as double-membrane are sometimes found with single or triple membranes). In addition, the number of individual organelles of each type found in a given cell varies depending upon the function of that cell. The cell membrane and cell wall are not organelles.

More information Main function, Structure ...
More information Main function, Structure ...

Other related structures:

Remove ads

Prokaryotic organelles

Summarize
Perspective
Thumb
(A) Electron micrograph of Halothiobacillus neapolitanus cells, arrows highlight carboxysomes. (B) Image of intact carboxysomes isolated from H. neapolitanus. Scale bars are 100 nm.[22]
Thumb
Structure of Candidatus Brocadia anammoxidans, showing an anammoxosome and intracytoplasmic membrane

Prokaryotes are not as structurally complex as eukaryotes, and were once thought to have little internal organization, and lack cellular compartments and internal membranes; but slowly, details are emerging about prokaryotic internal structures that overturn these assumptions.[2] An early false turn was the idea developed in the 1970s that bacteria might contain cell membrane folds termed mesosomes, but these were later shown to be artifacts produced by the chemicals used to prepare the cells for electron microscopy.[23]

However, there is increasing evidence of compartmentalization in at least some prokaryotes.[2] Research has revealed that at least some prokaryotes have microcompartments, such as carboxysomes. These subcellular compartments are 100–200 nm in diameter and are enclosed by a shell of proteins.[1] Even more striking is the description of membrane-bounded magnetosomes in bacteria, reported in 2006.[24][25]

The bacterial phylum Planctomycetota has revealed a number of compartmentalization features. The Planctomycetota cell plan includes intracytoplasmic membranes that separates the cytoplasm into paryphoplasm (an outer ribosome-free space) and pirellulosome (or riboplasm, an inner ribosome-containing space).[26] Membrane-bounded anammoxosomes have been discovered in five Planctomycetota "anammox" genera, which perform anaerobic ammonium oxidation.[27] In the Planctomycetota species Gemmata obscuriglobus, a nucleus-like structure surrounded by lipid membranes has been reported.[26][28]

Compartmentalization is a feature of prokaryotic photosynthetic structures.[2] Purple bacteria have "chromatophores", which are reaction centers found in invaginations of the cell membrane.[2] Green sulfur bacteria have chlorosomes, which are photosynthetic antenna complexes found bonded to cell membranes.[2] Cyanobacteria have internal thylakoid membranes for light-dependent photosynthesis; studies have revealed that the cell membrane and the thylakoid membranes are not continuous with each other.[2]

More information Main function, Structure ...
More information Main function, Structure ...
Remove ads

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads