From Wikipedia, the free encyclopedia
Φθίνουσα ή αποσβεννύμενη ταλάντωση ονομάζεται η ταλάντωση κατά την οποία μειώνεται το πλάτος της ταλάντωσης. Η μείωση του πλάτους ονομάζεται απόσβεση.
Το φαινόμενο οφείλεται στην απώλεια ενέργειας από το ταλαντευόμενο σύστημα προς το περιβάλλον. Αυτό φαίνεται και από τον τύπο E=(1/2)kA2 που ισχύει σε κάθε ταλάντωση, όπου Ε η ενέργεια του ταλαντευόμενου συστήματος, k μία σταθερά και Α το πλάτος της ταλάντωσης. Έτσι, όταν μειώνεται η ενέργεια μειώνεται και το πλάτος.
Η απώλεια της ενέργειας συνήθως οφείλεται σε δυνάμεις οι οποίες αντιστέκονται στην κίνηση. Αυτές οι δυνάμεις συνήθως είναι τριβές. Όσο μεγαλύτερες κατά μέτρο είναι αυτές οι δυνάμεις, τόσο μεγαλύτερη είναι η απόσβεση.
Η περίοδος της φθίνουσας ταλάντωσης, στην περίπτωση οριζόντιας ταλάντωσης με τριβές ολίσθησης σταθερού μέτρου, είναι ίδια με την περίοδο της αμείωτης ταλάντωσης (χωρίς τριβή ολίσθησης)[1]. Αντίθετα, στην περίπτωση που η δύναμη της αντίστασης είναι ανάλογη με την ταχύτητα του σώματος τότε η περίοδος της φθίνουσας ταλάντωσης αυξάνεται[2] και η αύξηση αυτή μπορεί να είναι ανεπαίσθητη ή ακόμη να γίνει υπερβολικά μεγάλη, ώστε η κίνηση να μην είναι πλέον ταλάντωση.
Σημαντικό παράδειγμα αποσβεννύμενης ταλάντωσης είναι ένα σύστημα απλής αρμονικής ταλάντωσης στο οποίο ενεργεί δύναμη της μορφής F=-bv, όπου b μία σταθερά και v η ταχύτητα. Η σταθερά b ονομάζεται σταθερά απόσβεσης. Βάσει του παραπάνω μοντέλου δύναμης τριβής, η ενέργεια μειώνεται εκθετικά με το χρόνο. Συγκεκριμένα αποδεικνύεται ότι,
όπου Ε(t) η ενέργεια τη χρονική στιγμή t, Ε0 η αρχική ενέργεια (η ενέργεια τη στιγμή t=0) και τ ο λεγόμενος χαρακτηριστικός χρόνος απόσβεσης που εξαρτάται από τη σταθερά b, τη μάζα m του σώματος και τη σταθερά ελατηρίου k. Αποδεικνύεται ότι τα διαδοχικά χρονικώς μέγιστα που λαμβάνει αυτή η ταλάντωση είναι όροι φθίνουσας γεωμετρικής προόδου. Η εξίσωση αυτής της φθίνουσας ταλάντωσης με το παραπάνω μοντέλο δύναμης τριβής στη περίπτωση όπου ω0>γ (ω02=k/m η φυσική συχνότητα του συστήματος) είναι της γενικής μορφής:
όπου ω<ω0 η κυκλική συχνότητα ταλάντωσης (η οποία εξαρτάται τόσο από τη φυσική συχνότητα όσο και από τη σταθερά απόσβεσης), A0 η απομάκρυνση του σώματος τη χρονική στιγμή t=0 και φ0 η αρχική φάση.
Η φθίνουσα ταλάντωση εφαρμόζεται στις αναρτήσεις των αυτοκινήτων.
Δεδομένης της μορφής της δύναμης τριβής που δόθηκε παραπάνω, η μονοδιάστατη εξίσωση του Νεύτωνα καταλήγει στην παρακάτω διαφορική εξίσωση:
όπου θέσαμε , την κυκλική συχνότητα της ταλάντωσης αν δεν υπήρχε απόσβεση, και . Υποθέτωντας εκθετικές λύσεις της μορφής και αντικαθιστώντας στην παραπάνω εξίσωση, βρίσκουμε ότι οι δυνατές τιμές της σταθεράς είναι:
Μπορεί λοιπόν κανείς να διακρίνει τις παρακάτω βασικές περιπτώσεις:
α) Υποκρίσιμη απόσβεση (γ<ω0)
Στη παραπάνω περίπτωση,
Η γενική λύση της εξίσωσης του Νεύτωνα για την απομάκρυνση θα είναι λοιπόν
όπου
Οι ποσότητες x0 και v0 αντιστοιχούν στην αρχική θέση και ταχύτητα του σώματος. Η γωνία φ ονομάζεται αρχική φάση
Είναι χρήσιμο να εισαγάγουμε τον χαρακτηριστικό χρόνο απόσβεσης, τ, του συστήματος ο οποίος ορίζεται ως 1/γ έτσι ώστε
Η φυσική σημασία του χαρακτηριστικού χρόνου απόσβεσης είναι ο εξής: Σε χρόνο τ, το πλάτος ταλάντωσης μειώνεται στο 1/e του αρχικού πλάτους Α0.
Το σώμα θα εκτελεί λοιπόν μία φθίνουσα ταλάντωση με περίοδο
όπου Τ0 η περίοδος που θα είχε το σώμα αν δεν υπήρχε η δύναμη τριβής. Από την παραπάνω σχέση είναι φανερό ότι Τ>Τ0, δηλαδή η περίοδος της φθίνουσας ταλάντωσης είναι μεγαλύτερη από την περίοδο της απλής αρμονικής ταλάντωσης.
β) Κρίσιμη απόσβεση (γ=ω0)
Σε αυτή τη περίπτωση,
Η γενική λύση της εξίσωσης του Νεύτωνα στη περίπτωση αυτή είναι
όπου
γ) Υπερκρίσιμη απόσβεση (γ>ω0)
Στη περίπτωση αυτή,
Η γενική λύση της εξίσωσης του Νεύτωνα θα είναι λοιπόν:
όπου
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.