άρτιοι και περιττοί αριθμοί From Wikipedia, the free encyclopedia
Κάθε ακέραιος αριθμός μπορεί να είναι είτε άρτιος είτε περιττός σύμφωνα με τον παρακάτω κανόνα: αν είναι ακέραιο πολλαπλάσιο του δύο τότε είναι άρτιος, διαφορετικά είναι περιττός. Για παράδειγμα οι αριθμοί -2, 0, 8 είναι άρτιοι ενώ οι -3, 1, 21 είναι περιττοί.
Το λήμμα δεν περιέχει πηγές ή αυτές που περιέχει δεν επαρκούν. |
Οι άρτιοι καλούνται επίσης ζυγοί και οι περιττοί καλούνται μονοί και συχνά εννοούμε μόνο τους φυσικούς αριθμούς (δεν περιλαμβάνονται αρνητικοί).
Το αποτέλεσμα της διαίρεσης δύο ακεραίων αριθμών δεν είναι αναγκαστικά ακέραιος αριθμός. Για παράδειγμα το πηλίκο της διαίρεσης του 1 με το 2 είναι το κλάσμα 12 που δεν είναι ούτε άρτιος ούτε περιττός αφού άρτιοι ή περιττοί μπορούν να είναι μόνο οι ακέραιοι. Αν όμως το πηλίκο της διαίρεσης δύο ακεραίων είναι ακέραιος τότε αυτός είναι άρτιος αν και μόνο αν ο διαιρετέος έχει περισσότερους παράγοντες του δύο από τον διαιρέτη.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.