Παραγοντικό

From Wikipedia, the free encyclopedia

Remove ads
Remove ads

Στα μαθηματικά τo παραγοντικό ενός φυσικού αριθμού συμβολίζεται με , διαβάζεται νυ παραγοντικό, και είναι το γινόμενο όλων των θετικών ακεραίων μικρότερων ή ίσων με :

.
Περισσότερες πληροφορίες ν, ν! ...

Για παράδειγμα,

,
,
,
,
.

Το παραγοντικό ενός αριθμού ισούται με το πλήθος των δυνατών μεταθέσεων των στοιχείων ενός συνόλου, δηλαδή το πλήθος των διαφορετικών τρόπων με τους οποίους μπορούμε να βάλουμε σε μια σειρά τα στοιχεία ενός συνόλου. Για παράδειγμα, για το σύνολο , υπάρχουν συνολικά δυνατές μεταθέσεις, οι οποίες είναι οι εξής: , , , , , .

Remove ads

Ορισμός

Το ορίζεται αναδρομικά ως εξής για τον φυσικό αριθμό :

ή μη-αναδρομικά, κάνοντας χρήση του συμβόλου για τον πολλαπλασιασμό, ως εξής:

Remove ads

Η σύμβαση 0! = 1

Παρατηρήστε ότι και στους δύο παραπάνω ορισμούς η σύμβαση είναι ότι . Αυτό βοηθάει σε διάφορους ορισμούς που προκύπτουν από αυτόν του παραγοντικού, όπως είναι οι διωνυμικοί συντελεστές , οι οποίοι για δίνονται από τον τύπο

Ο ορισμός του , επιτρέπει στον ορισμό να δουλεύει για , καθώς και για χωρίς αλλαγές.

Remove ads

Πλήθος μεταθέσεων

Όπως αναφέρθηκε στην εισαγωγή, το πλήθος των δυνατών μεταθέσεων ενός συνόλου με στοιχεία είναι . Αυτό προκύπτει επαγωγικά. Για , υπάρχει μία δυνατή μετάθεση για αυτό το στοιχείο.

Για , υπάρχουν τρόποι να διαλέξουμε το πρώτο στοιχείο της μετάθεσης (διαλέγοντας οποιοδήποτε από τα στοιχεία) και έπειτα υπάρχουν στοιχεία για τις υπόλοιπες θέσεις. Από την επαγωγική υπόθεση υπάρχουν τρόποι να διατάξουμε αυτά τα στοιχεία και επομένως συνολικά τρόποι να διατάξουμε τα στοιχεία.

Αναδρομική κατασκευή μεταθέσεων
Thumb
Αναδρομική κατασκευή μεταθέσεων με τρία στοιχεία, χρησιμοποιώντας τις μεταθέσεις δύο στοιχείων.
Thumb
Γενική αναδρομική κατασκευή μεταθέσεων με στοιχεία, έχοντας τις μεταθέσεις για τα στοιχεία.

Ασυμπτωτική συμπεριφορά

Σε αρκετές εφαρμογές είναι πιο βολικό να δουλεύουμε με προσεγγίσεις του , αντί με τον κλειστό τύπο.

Τύπος Στίρλινγκ

Thumb
Η προσέγγιση του (και της συνεχής επέκτασής του με την συνάρτησης γάμμα) με τον τύπο του Στίρλινγκ.
Κύριο λήμμα: Τύπος Στίρλινγκ

Ο τύπος του Στίρλινγκ δίνει ότι

ή ισοδύναμα

Φράγματα

Σε κάποιες εφαρμογές (ειδικά στον χώρο της θεωρητικής πληροφορικής), τα παρακάτω φράγματα[1] δίνουν αρκετά ικανοποιητικά αποτελέσματα:

Remove ads

Εφαρμογές

Κυκλικές μεταθέσεις

Έστω ότι θέλουμε να μετρήσουμε το πλήθος των δυνατών κυκλικών μεταθέσεων. Για παράδειγμα, μπορεί να θέλουμε να τοποθετήσουμε άτομα σε ένα κυκλικό τραπέζι με θέσεις, τότε υπάρχουν οι εξής δυνατές μεταθέσεις. Παρατηρήστε ότι οι διατάξεις , , και είναι ισοδύναμες.

Κυκλικές μεταθέσεις για ένα σύνολο τεσσάρων στοιχείων
Thumb
Οι έξι δυνατές κυκλικές μεταθέσεις για τα στοιχεία .
Thumb
Οι ισοδύναμες κυκλικές μεταθέσεις για τα τέσσερα στοιχεία.


Στην γενική περίπτωση κάθε διάταξη είναι ισοδύναμη με τις κυκλικές διατάξεις της. Επομένως, από τις δυνατές μεταθέσεις, ακριβώς οι αντιστοιχούν σε διαφορετικές μεταθέσεις σε έναν κύκλο.

Διατάξεις

Ορισμός μαθηματικής σταθεράς

Το παραγοντικό εμφανίζεται και στον εξής ορισμό της μαθηματικής σταθεράς e,

Δυναμοσειρές τριγωνομετρικών συναρτήσεων

Η συνάρτηση του ημιτόνου μπορεί να οριστεί ως εξής:

Επίσης, η συνάρτηση του συνημιτόνου μπορεί να οριστεί ως εξής:

Σειρά Τέιλορ

Η σειρά Τέιλορ μίας πραγματικής συνάρτησης στο σημείο είναι η δυναμοσειρά

Remove ads

Υπολογισμός

Παρακάτω δίνονται οι δύο κλασσικές υλοποιήσεις για τον υπολογισμό του παραγοντικού: η αναδρομική και η γραμμική υλοποίηση. Σε γλώσσες προγραμματισμού με ακεραίους πεπερασμένου μεγέθους ο παρακάτω κώδικας θα οδηγήσει σε υπερχείλιση όταν το είναι μεγάλο. Και οι δύο αλγόριθμοι χρησιμοποιούν πολλαπλασιασμούς.

Αναδρομικός υπολογισμός

int factorial(int n) {
   if (n == 1) return 1;
   return n * factorial(n - 1);
}

Γραμμικός υπολογισμός

int factorial(int n) {
   int ans = 1;
   for (int i = 1; i <= n; ++i) {
      ans *= i;
   }
   return ans;
}
Remove ads

Αντιπαραγοντικό

Το αντιπαραγοντικό ενός φυσικού αριθμού συμβολίζεται με , διαβάζεται νι αντιπαραγοντικό, και είναι το πηλίκο όλων των θετικών ακέραιων μικρότερων ή ίσων με , δηλαδή

και συμβατικά .

Το αντιπαραγοντικό μας δίνει η πιθανότητα εντοπισμού μίας συγκεκριμένης μετάθεσης από το σύνολο των μεταθέσεων. Για παράδειγμα, το σύνολο , μας δίνει τις μεταθέσεις: και . Η πιθανότητα εύρεσης της επιθυμητής μετάθεσης ( ή ), δίνεται από το αντιπαραγοντικό του δηλαδή , συνεπώς .

Ομοίως, για το , το αντιπαραγοντικό του είναι ίσο με , δηλαδή περίπου .

Remove ads

Δείτε επίσης

Παραπομπές

Εξωτερικοί σύνδεσμοι

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads