From Wikipedia, the free encyclopedia
Η γενική διατύπωση γραμμικών συναρτήσεων είναι . Η κλίση μιας γραμμικής συνάρτησης (δηλ. μιας ευθείας) είναι
Το λήμμα παραθέτει τις πηγές του αόριστα, χωρίς παραπομπές. |
για δύο οποιαδήποτε σημεία , όταν διάφορο .Αν Τότε ΔΕΝ ορίζεται κλίση ευθείας.
Σε μη γραμμικές συναρτήσεις, π.χ. καμπύλες στο δισδιάστατο χώρο (ως παραστατική περίπτωση) η κλίση ποικίλλει. Ένας τρόπος για να οριστεί η κλίση μιας (μη γραμμικής) συνάρτησης σε κάποιο σημείο είναι να ταυτιστεί η κλίση της συνάρτησης στο σημείο με την κλίση της εφαπτομένης που έρχεται σε επαφή με την συνάρτηση στο συγκεκριμένο σημείο. Η επόμενη ερώτηση είναι λοιπόν πώς να υπολογιστεί η κλίση της εφαπτομένης. Είναι εύκολο να κατανοηθεί ότι αν επιλεχτεί ένα σημείο κοντά στο η τέμνουσα που διέρχεται από τα σημεία και έχει περίπου την ίδια κλίση με την εφαπτόμενη. Η κλίση της τέμνουσας είναι
Το παραπάνω κλάσμα ονομάζεται μέσος ρυθμός μεταβολής. Όσο πλησιέστερα επιλεχτεί το σημείο στο σημείο , τόσο καλύτερη είναι η προσέγγιση της κλίσης της εφαπτομένης. Η άπειρη προσέγγιση του σημείου στο σημείο και μαζί της ο υπολογισμός της κλίσης της εφαπτομένης εκφράζεται στα μαθηματικά ως ακολούθως
Η τιμή ονομάζεται παράγωγος της συνάρτησης στο σημείο . Επίσης μπορεί να ειπωθεί πως η παράγωγος είναι το όριο του μέσου ρυθμού μεταβολής εάν το τείνει στο . Αν αυτό το όριο υπάρχει τότε η συνάρτηση ονομάζεται διαφορίσιμη, αν δεν υπάρχει το όριο , μη διαφορίσιμη.
Αυτό το μαθηματικό λήμμα χρειάζεται επέκταση. Μπορείτε να βοηθήσετε την Βικιπαίδεια επεκτείνοντάς το. |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.