Weinberg-Witten-Theorem
Aus Wikipedia, der freien Enzyklopädie
Aus Wikipedia, der freien Enzyklopädie
Das Weinberg-Witten-Theorem, nach Steven Weinberg und Edward Witten, ist eine Aussage in der Quantenfeldtheorie. Unter sehr generellen Annahmen leitet es Ausschlusskriterien über die Eigenschaften von Teilchen her. Damit gehört das Weinberg-Witten-Theorem zu den sogenannten No-go-Theoremen der Quantenfeldtheorie. Das Weinberg-Witten-Theorem verknüpft dabei den maximalen Spin eines masselosen Teilchens mit seiner transportierten Ladung unter Annahme der Gültigkeit von Einsteins Spezieller Relativitätstheorie. Die bedeutendste Folgerung aus dem Weinberg-Witten-Theorem ist, dass das Graviton, sofern es existiert, ein Elementarteilchen sein muss.
Das Weinberg-Witten-Theorem besagt konkret folgendes:
Die Vereinigung der Allgemeinen Relativitätstheorie mit der Quantenfeldtheorie im Rahmen einer Quantenfeldtheorie auf gekrümmter Raumzeit mit ihrem Standard-Graviton wird vom Weinberg-Witten-Theorem nicht berührt, da ihr Energie-Impuls-Tensor nicht Lorentz-kovariant ist. Es schließt jedoch alle Theorien mit masselosen Gravitonen aus, die aus Standardmodell- oder SUSY-Teilchen aufgebaut sind.
Ebenso werden weder abelsche noch nichtabelsche Yang-Mills-Theorien, auf denen das Standardmodell basiert, berührt, da abelsche Theorien wie die Quantenelektrodynamik nur zu ungeladenen Teilchen mit Spin führen und nichtabelsche Theorien wie die Quantenchromodynamik keine eichinvarianten Noether-Ladungen besitzen.
Für massive Teilchen trifft das Weinberg-Witten-Theorem keine Aussage.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.