Loading AI tools
Abbild einer auf der Erdoberfläche lokalisierter Ort, dem durch Benutzerdefinition materielle oder immaterielle Eigenschaften zugeordnet werden Aus Wikipedia, der freien Enzyklopädie
Geoobjekt bezeichnet in der Geographie ein auf der Erde früher oder heute tatsächlich vorhandenes Objekt, das mittels Geodaten eindeutig referenzierbar ist. Es ist im strengeren Sinne der Geographie ein identifizierbarer Teil, im weiteren Sinne der Geoinformatik ein identifizierbares Merkmal der Erdoberfläche, wie es für die kartographische Darstellung auf allgemein-geographischen und damit auch topographischen Karten, oder in Geoinformationssystemen relevant ist.
Ein geographisches Objekt ist ein auf der Erdoberfläche lokalisierter Ort, dem durch Benutzerdefinition materielle oder immaterielle Eigenschaften zugeordnet werden. Diese Definition erfolgt im fachspezifischen – geowissenschaftlichen – Kontext.
Nach Terminologie der Sachverständigengruppe der Vereinten Nationen für geographische Namen (UNGEGN)[1] bezeichnet der Begriff speziell Orte auf der Erdoberfläche,[2] während für ein topographisches Objekt diese Einschränkung nicht gilt.[3]
Die Geoinformatik definiert das Geoobjekt als „ein benutzerdefiniertes raumbezogenes Phänomen, das modelliert oder dargestellt werden kann.“[4]
Im Unterschied zu allgemeinen Definitionen oder Beschreibungen (Phänomenologie) von Gebilden der Geographie handelt es sich hierbei um bestimmte einzelne, durch ihre Position (geographische Koordinaten) nachweisbare Örtlichkeiten. Kollektivbegriffe wie etwa Berg, Insel oder Bucht beschreiben eine Vielzahl gleichartiger Objekte. Einzelgebilde aus diesen Objektfamilien (Objektklassen)[5] wie beispielsweise der Berg Zugspitze, die Insel Korsika oder die Danziger Bucht werden durch ihre Benennung – ihren Individualnamen, ein Toponym – identifiziert und können problemlos über ihre eindeutigen irdischen Koordinaten kartographisch erfasst und somit weltweit in Karten und Atlanten eingetragen werden.
Geoobjekte lassen sich in zwei Kategorien einteilen[6]
Auch Beziehungen zwischen Objekten können mit einem eigens dafür geschaffenen Objekt näher dargestellt werden. In diesem Zusammenhang spricht man im objektorientierten Entwurf auch von einer Assoziationsklasse.
Es wird unterschieden zwischen
Ein wichtiger Umstand bei der Entscheidung, welches Objekt wie einzuordnen ist, ist der Kartenmaßstab, die Darstellbarkeit und die Erkennbarkeit.
Beispiel: Ein flächenhaftes quadratisches Waldstück in den Naturmaßen von 10 m × 10 m Ausdehnung hat in den folgenden Maßstäben nachstehend aufgeführte Kartenmaße:
Maßstab | Kartenmaße |
---|---|
1 : 1.000 | 10 mm × 10 mm |
1 : 10.000 | 1 mm × 1 mm |
1 : 100.000 | 0,1 mm × 0,1 mm |
1 : 1.000.000 | 0,01 mm × 0,01 mm |
Bei einer Zeichengenauigkeit von in der Regel 0,1 mm bis 0,2 mm wird deutlich, dass das Waldstück bereits ab dem Maßstab 1:10 000 kaum noch als Fläche wahrnehmbar ist. Aus diesem Grunde ist für diese Fälle (sofern das Waldstück eine solche Wichtigkeit besitzt, dass es dargestellt werden muss) nur eine punktförmige Darstellung denkbar. Die Auswahl der Objekte, die überhaupt dargestellt wird, oder deren Vereinfachung, nennt man Generalisierung.
Geoobjekte bilden Elemente zur Modellierung der Realwelt in geographischen Informationssystemen (GIS). Im Allgemeinen weist ein Geoobjekt vier informationstechnische Dimensionen – auch Komponenten genannt - auf:
Das Objekt kann elementar oder beliebig komplex zusammengesetzt sein. Geoobjekte werden durch Geoinformationen beschrieben.
Jedes Objekt stellt ein Unikat dar, ist jedoch gleichzeitig Teil einer Objektklasse. In der Objektklasse wird das allgemeine Aussehen eines Objektes definiert (z. B. ob es punktförmig, linear oder flächenhaft ist, durch welche Attribute es näher beschrieben wird, welche Beziehungen sind möglich oder notwendig). Zur Identifikation muss jedes Objekt mit einem eindeutigen Schlüssel oder Identifikator versehen sein.
Zur Standardisierung von Geoinformationen wurde durch die ISO die Normenreihe ISO 191xx geschaffen. In diesem Kontext regelt die Norm ISO 19109 die Regeln für die Modellierung von Geoobjekten. Es wird hierfür der Begriff des General Feature Models eingeführt.
Die Objektmodellierung schafft eine Struktur, indem sie die einzelnen Objekte in einen Zusammenhang bringt, sie gewissermaßen nach den Gesetzen der Realwelt verknüpft. Daraus resultiert schließlich das digitale Objektmodell (DOM).
Der Modellierungsprozess und seine Dokumentation stellen eine bedeutende Phase in der Planung eines GIS dar. Das digitale Objektmodell hat schließlich entscheidenden Einfluss auf die Analyse- und Visualisierungsmöglichkeiten des Systems.
Die Modellierung in einem GIS erfolgt anhand unterschiedlicher Techniken. Wird das Modell in einer relationalen Geodatenbank gespeichert, so spricht man von einer daten- oder strukturorientierten Modellierung. Objekte werden in Form von Relationen abgebildet. Zur Laufzeit der GIS-Applikation kann daraus ein durch Methoden angereichertes und daher kraftvolleres virtuelles Objektmodell (nach Vorlage einer Klassenhierarchie) entstehen, das nur im Hauptspeicher existiert und für die eigentliche Dynamik im Informationssystem verantwortlich ist.
Die Geometrie beschreibt die räumliche Lage eines Objekts im 2- oder 3-dimensionalen Raum. Sie umfasst alle Angaben zur absoluten räumlichen Lage und Ausdehnung des Geoobjekts auf Basis eines räumlichen Bezugssystems. Bei Kontinua, die räumlich unbegrenzt sind, besteht die geometrische Information in der Lageangabe für Zahlenwerte, die sich von Ort zu Ort kontinuierlich ändern (Wertefelder).[8]
Zur Beschreibung der Geometrie sind zwei Modelle weit verbreitet:
In einem Rastermodell wird der Interessensbereich in Teilflächen mit homogener Semantik aufgeteilt. Man spricht in diesem Zusammenhang von Mosaik oder Tesselation. Die häufigste Form der Tesselation ist die Aufteilung des Raumes in quadratische oder rechteckige Gitterzellen (Raster). Die Semantik wird durch die numerischen Werte der Matrizenelemente dargestellt. Dieser Grauwert ist nicht als Farbe, sondern als Sekundärinformation zu interpretieren. So steht der Grauwert einer Rasterzelle in einer Infrarotaufnahme für eine semantische Aussage: z. B. für den Vitalitätsfaktor der Pflanzen.
Die Rastergeometrie eignet sich gut zur Beschreibung flächiger Sachverhalte und für das Layerkonzept. So ergeben sich beispielsweise in Überschneidungszonen zweier Ebenen spezifische Grauwerte. Durch das regelmäßige Gitter ist es eine leichte mathematische Übung, die Gesamtfläche des Überschneidungsgebietes zu berechnen.
Das Wesen georelationaler Modelle kann im Rastermodell durch Zeiger simuliert werden, die von einer Rasterzelle auf eine Sachdatei verweisen, wo detaillierte semantische Informationen vorliegen. Der Zellwert spielt in diesem Zusammenhang die Rolle eines Schlüssels für eine Datei oder einen Dateiabschnitt. Dieser Zeiger muss dabei nicht für jede Rasterzelle definiert werden. Es genügt der Verweis auf ein Zentroid (interner Schlüssel), welches in weiterer Folge die externe Datei referenziert.[9]
Vektormodelle bauen auf Punkte und Linien auf. Flächen werden durch geschlossene Polygonzüge dargestellt. Vektormodelle bezeichnet man auch als lineale Modelle, während Rasterdaten ein areales Modell darstellen (im 3-dimensionalen Raum Drahtmodell versus Volumenmodell).
Das Vektormodell eignet sich sehr gut zur Darstellung linienhafter Objekte (z. B. Leitungen, Verkehrswege oder Flussnetze).
Vektordaten benötigen weniger Speicherplatz als Rasterdaten, obwohl für diese sehr leistungsfähige Kompressionsalgorithmen zur Verfügung stehen. Die Semantik wird den geometrischen Elementen zugeordnet. Im Gegensatz zum Rastermodell, bei dem der Grauwert einer Zelle eine implizite Zuordnung darstellt, müssen im Vektormodell Verknüpfungen explizit definiert werden. Man spricht in diesem Zusammenhang auch von einem georelationalen Modell.[10]
Die elementaren Teile können zu höherwertigen Strukturen (graphische Gefüge) zusammengesetzt werden. Auch auf dieser Ebene kann mit thematischen Attributen verknüpft werden.
In Vektormodellen sind Schnitt- und Flächenberechnungen komplizierter als im Rastermodell.
Die Topologie befasst sich mit jenen Eigenschaften des Raumbezugs, die von der Metrik unabhängig sind. Sie charakterisiert die räumlichen Beziehungen von Geoobjekten zueinander und wird daher auch als „Geometrie der relativen Lage“ bezeichnet: Umgebung, Enthaltensein, Nachbarschaft oder Überschneidung sind Merkmale topologischer Beziehungen.
Jeder metrische Raum ist zugleich auch topologischer Raum. Die bei geometrischer Rotation, Translation oder Skalierung unveränderten topologischen Eigenschaften bezeichnet man als topologische Invarianten.
Topologische Elementarstrukturen sind 0-Zelle (Knoten), 1-Zelle (Kante) und 2-Zelle (Masche). Im Rastermodell ist die Topologie durch die Zellmatrix bereits implizit festgelegt. Im Vektormodell muss sie explizit formuliert werden. Oftmals lassen sich topologische Beziehungen zwar aus Berechnungen des geometrischen Modells ableiten, jedoch bildet eine effiziente topologische Modellierung eine wichtige Grundlage für die Datenkonsistenz.
Die Semantik bildet eine Ergänzung zur Geometrie. Während die Geometrie nach dem „wo“ fragt, bezieht sich die Frage der Semantik nach dem „was“.
Die Semantik beschreibt – im Gegensatz zum nach außen gerichteten Raumbezug – alle nach innen, auf das Wesen des Objekts bezogenen Angaben.[8] Semantik ist die Bedeutung eines Geoobjekts im fachspezifischen Kontext. Diese Bedeutung ergibt sich in raumbezogenen Objektmodellen durch die Zugehörigkeit zu einer bestimmten Objektklasse. Verfeinert wird sie durch das Zusammenspiel klassenzugehöriger nicht raumbezogener Attribute. Diese können qualitativer oder quantitativer Natur sein. Qualität bezeichnet Angaben zur Art oder Beschaffenheit eines Objekts. Quantität hingegen richtet den Fokus auf Menge, Wert, Intensität oder Größe.
Die Semantik resultiert aus der Strukturierung der Fachdaten und der Betrachtung als Ganzes. Eine Besonderheit der Semantik ist auch, dass sie keinesfalls frei von Subjektivität ist. Der Nutzer verknüpft mit einem Objekt bestimmte Merkmale, die durch seine Lebensbedingungen oder seine spezifische Sichtweise auf das Objekt vorgegeben sind.
Man kann jedoch die Semantik im Sinne der individuellen Perzeption ausklammern und den Begriff stellvertretend für die Bedeutung verwenden, die einem Objekt bezüglich einer konkreten Fragestellung durch Fachattribute gegeben wird.
Mit dem Begriff der Dynamik werden alle zeitlichen Veränderungen von Geoobjekten charakterisiert. Die Intensität dynamischer Modellierung hängt davon ab, ob das Ziel des Systems eine „Momentaufnahme“ dient (statisch) oder ein dynamisches Verhalten im Vordergrund steht.
Modellierungen zu Themen wie Strömung, Transporte, Raumentwicklung etc. richten ihr Augenmerk auf temporale Veränderungen. Überlegungen zur Einbringung und Visualisierung von Dynamik spielen in diesen Fällen natürlich eine ganz entscheidende Rolle.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.