Loading AI tools
mathematischer Satz Aus Wikipedia, der freien Enzyklopädie
Der Satz von Menelaos, benannt nach dem griechischen Mathematiker Menelaos (Alexandria, etwa 100 n. Chr.), macht eine Aussage über Streckenverhältnisse, die beim Schnitt einer Geraden mit einem Dreieck entstehen.
Gegeben seien ein Dreieck ABC und eine Gerade, welche die Dreiecksseiten [BC], [CA] und [AB] beziehungsweise ihre Verlängerungen in den Punkten X, Y und Z schneidet. Dann gilt:
Umgekehrt kann man aus der Richtigkeit dieser Beziehung folgern, dass die Punkte X, Y und Z auf einer Geraden liegen.
Hierbei ist das Teilverhältnis von , das für drei auf einer Geraden liegende Punkte mit definiert wird durch . Wenn zwischen und liegt, ist dieses Teilverhältnis gleich , andernfalls gleich .
Betrachtet man nur die Streckenlängen, so kann man die obige Gleichung auch in folgender Form schreiben:
Da die Orientierung hierbei verloren geht, ist diese Gleichung nicht ausreichend für eine Umkehrung des Satzes, vgl. Satz von Ceva.
Der Satz von Menelaos lässt sich mit Hilfe des Strahlensatzes beweisen. Man betrachtet drei Lote auf die gegebene Gerade, die von den Ecken A, B und C ausgehen. Die Längen der Lotstrecken seien mit , und bezeichnet.
Aus dem Strahlensatz erhält man folgende Verhältnisgleichungen:
Multipliziert man diese drei Gleichungen miteinander, so ergibt sich
und weiter (durch Multiplikation mit dem Nenner)
Der Satz von Menelaos liefert zusammen mit seiner Umkehrung ein Kriterium für kollineare Punkte. Eine Folgerung ist der Satz von Ceva.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.