Remove ads
Aus Wikipedia, der freien Enzyklopädie
Der Satz vom regulären Wert ist ein Resultat aus der Differentialtopologie. Auf Englisch heißt dieser Satz Preimage Theorem. Mit Hilfe des Satzes ist es möglich, konstruktiv Untermannigfaltigkeiten zu einer differenzierbaren Mannigfaltigkeit zu finden.
Es seien und differenzierbare Mannigfaltigkeiten und es sei eine differenzierbare Abbildung. Außerdem sei ein regulärer Wert von . Dann ist die Menge
eine abgeschlossene, differenzierbare Untermannigfaltigkeit von . Für den Tangentialraum gilt dann
wobei das Differential von im Punkt bezeichne.
Falls endlichdimensional ist, so gilt für die Kodimension von
Dies folgt aus der Aussage über den Tangentialraum. Falls noch zusätzlich endlichdimensional ist, kann man die Dimension von mit Hilfe der Formel
berechnen.
Mit Hilfe des Satzes kann man zeigen, dass die -dimensionale Einheitssphäre eine Untermannigfaltigkeit des ist. Es sei
Dann gilt . Es muss nur noch gezeigt werden, dass 1 ein regulärer Wert ist. Dies sieht man durch
Der Operator steht für die Matrixtransposition. Nur für wird der Term null. Für alle anderen gilt für den Rang
Also ist insbesondere das Differential für surjektiv und damit ist eine reelle Untermannigfaltigkeit.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.