Loading AI tools
Aus Wikipedia, der freien Enzyklopädie
Regressionsparameter, auch Regressionskoeffizienten oder Regressionsgewichte genannt, messen den Einfluss einer Variablen in einer Regressionsgleichung.[1] Dazu lässt sich mit Hilfe der Regressionsanalyse der Beitrag einer unabhängigen Variablen (des Regressors) für die Prognose der abhängigen Variablen herleiten.
Bei einer multiplen Regression kann es sinnvoll sein, die standardisierten Regressionskoeffizienten zu betrachten, um die Erklärungs- oder Prognosebeiträge der einzelnen unabhängigen Variablen (unabhängig von den bei der Messung der Variablen gewählten Einheiten) miteinander vergleichen zu können, z. B. um zu sehen, welcher Regressor den größten Beitrag zur Prognose der abhängigen Variablen leistet.
Gegeben sei das multiple lineare Modell
Den Parameter bezeichnet man als Niveauparameter, Achsenabschnitt, Absolutglied, Regressionskonstante oder kurz Konstante (engl. intercept).
Die Parameter nennt man Steigungsparameter, Steigungskoeffizienten oder Anstieg (engl. slope).
Die sind Störgrößen.
Man unterscheidet bei der Interpretation der Regressionskoeffizienten die folgenden Fälle:
Im Fall, bei der die endogene Variable untransformiert (level) ist und die exogene Variable ebenfalls (level) gilt aufgrund von
Damit gilt für den Niveau- und den Steigungsparameter:
und
Der Niveauparameter lässt sich wie folgt interpretieren: Die Zielgröße beträgt im Mittel (bzw. ) wenn alle Regressoren sind.
Für den jeweiligen Steigungsparameter gilt: Steigt c.p. um eine Einheit, dann steigt im Mittel um -Einheiten.
Im Fall, bei der die endogene Variable logarithmisch transformiert (log) ist und die exogene Variable ebenfalls (log) gilt
Dies kann wie folgt interpretiert werden: Steigt das transformierte c.p. um 1 %, dann steigt das transformierte im Mittel um -Prozent. Ökonomisch würde dies der Interpretation als Elastizität entsprechen.
Die standardisierten Regressionskoeffizienten (gelegentlich auch Beta-Werte oder Beta-Gewicht genannt) ergeben sich aus einer linearen Regression, in der die unabhängigen und abhängigen Variablen standardisiert worden sind, das heißt, der Erwartungswert gleich Null und die Varianz gleich Eins gesetzt wurde. Sie können auch direkt berechnet werden aus den Regressionskoeffizienten der linearen Regression:
Sind die standardisierten erklärenden Variablen untereinander unabhängig und auch unabhängig vom Störterm (Voraussetzung im klassischen Regressionsmodell), dann gilt
das heißt die Summe der quadrierten standardisierten Regressionskoeffizienten ist kleiner gleich Eins. Sind einer oder mehrere der standardisierten Regressionskoeffizienten größer als Eins bzw. kleiner als minus Eins, weist dies auf Multikollinearität hin.
Für die abhängige Variable Mittlerer Hauspreis in selbstbewohnten Häusern pro Bezirk (in 1000 US$) aus dem Boston Housing Datensatz ergibt sich das nebenstehende Regressionsmodell:
Standardisiert man alle Variablen, kann man den Einfluss einer erklärenden Variablen auf die abhängige Variable abschätzen:
Wären die Variablen unabhängig voneinander, könnte man anhand der quadrierten Regressionskoeffizienten den Anteil der erklärten Varianz angeben:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.