Loading AI tools
Art von Sensor Aus Wikipedia, der freien Enzyklopädie
Piezoelektrische Sensoren arbeiten mit dem piezoelektrischen Effekt und haben sich als universelles Instrument zum Messen verschiedener Prozesse erwiesen. Sie werden für die Bestimmung von Druck, Beschleunigung, Spannung, Kraft oder als Gassensor in der Qualitäts- sowie in der Prozesskontrolle eingesetzt.
Viele Lebewesen verwenden Piezoelektrizität auf eine bestimmte Art und Weise: Knochen agieren als Kraftsensor. Unter Krafteinwirkung produzieren Knochen elektrische Ladungen proportional zu den inneren Belastungen. Diese Ladungen stimulieren und bewirken den Aufbau neuen Knochenmaterials, was zu einer Stärkung der Knochenstruktur an den Stellen führt, an denen die inneren Verformungen am größten sind. Dies führt zu belastungsspezifischen Minimalstrukturen und damit einem exzellenten Verhältnis von Gewicht zu Festigkeit.
Von der Entdeckung des piezoelektrischen Effekts durch die Brüder Curie bis zu seiner industriellen Nutzung in Sensoranwendungen verging einige Zeit. Erst seit den 1940er Jahren wird dieses Messprinzip eingesetzt und stellt heute eine ausgereifte Technologie mit einer herausragenden inhärenten Zuverlässigkeit dar; so wird der Piezoeffekt erfolgreich in zahlreichen kritischen Anwendungsbereichen, wie beispielsweise der Medizin-, Luftfahrt- oder Nukleartechnologie eingesetzt.
Der Aufstieg der piezoelektrischen Technologie beruht auf einer Reihe inhärenter Vorteile. Die hohen Elastizitätsmodule vieler piezoelektrischer Materialien sind mit den Elastizitätsmodulen vieler Metalle vergleichbar und reichen bis zu 105 N/mm². Obwohl piezoelektrische Sensoren elektromechanische Systeme sind, die auf Druck reagieren, zeigen die Messelemente nahezu keine Verformung (typischerweise werden die Messelemente nur um wenige Mikrometer komprimiert).
Dies ist ein Grund für die Robustheit der piezoelektrischen Sensoren, die sehr hohe Eigenfrequenz und die exzellente Linearität auch unter schwierigen Einsatzbedingungen. Darüber hinaus ist piezoelektrische Technologie unempfindlich gegen elektromagnetische Felder und Strahlungen. Einige der verwendeten Materialien – insbesondere Galliumphosphat und Turmalin – besitzen eine ausgezeichnete Stabilität über weite Temperaturbereiche, was einen Messbereich piezoelektrischer Sensoren bis fast 1000 °C ermöglicht. Zusätzlich zum Piezoeffekt existiert bei Turmalin der pyroelektrische Effekt. Dieser Effekt tritt auch bei allen Piezokeramiken (z. B. PZT) auf.
Ein Nachteil piezoelektrischer Sensoren ist ihre schlechte Eignung für den Einsatz bei rein statischen Messungen. Eine statische Kraft führt zu einer definierten Ladungsmenge an der Oberfläche des piezoelektrischen Materials. Wird diese Ladung nicht mit einem Ladungsverstärker, sondern – fachlich nicht korrekt – mit einem Impedanzwandler gemessen, gehen kontinuierlich Ladungen verloren, was letztendlich zu einem kontinuierlichen Signalabfall führt. Erhöhte Temperaturen erzeugen einen zusätzlichen Abfall des inneren Widerstands, daher können für solche Messbedingungen nur Materialien mit einem hohen inneren Widerstand eingesetzt werden.
Es wäre falsch anzunehmen, dass piezoelektrische Sensoren lediglich für sehr schnelle Prozesse oder unter moderaten Bedingungen verwendet werden können. Es existiert eine Vielzahl von Anwendungen, in denen unter quasistatischen Bedingungen gemessen wird, ebenso existieren Sensoren für Druckmessungen oberhalb von 500 °C.
In Abhängigkeit vom Schnitt des piezoelektrischen Materials können drei wesentliche Effekte und damit Funktionsweisen unterschieden werden: Transversal-, Longitudinal- und Schereffekt:
Im Gegensatz zum Longitudinal- und Schereffekt kann beim Transversaleffekt die erzeugte Ladungsmenge (Empfindlichkeit) über das Verhältnis Breite (a) zu Höhe (b) des Kristallelements verändert werden. Aus diesem Grund basieren die meisten Drucksensoren fast ausschließlich auf dem Transversaleffekt.
Basierend auf der piezoelektrischen Messtechnik können zahlreiche physikalische Größen wie Druck und Beschleunigung gemessen werden. Für Drucksensoren wird eine dünne Membran mit bekannten Dimensionen und einer massiven Basis verwendet, um sicherzustellen, dass der Druck die Elemente gezielt in einer Richtung belastet. Bei Beschleunigungsaufnehmern wird eine seismische Masse mit den Kristallelementen verbunden. Wenn der Beschleunigungsaufnehmer eine Bewegung wahrnimmt, belastet die seismische Masse gemäß Newtons zweitem Bewegungsgesetz die Elemente.
Der Hauptunterschied in der Funktionsweise der beiden Sensoren ist die Art, in der die Kraft auf die Messelemente wirkt. In einem Drucksensor wird eine dünne Membran verwendet, um die Kraft zu den Elementen zu führen. In Beschleunigungsaufnehmern erfolgt die Krafteinwirkung durch eine seismische Masse.
Sensoren neigen häufig dazu, auf mehr als eine physikalische Größe anzusprechen. Drucksensoren zeigen ein Signal bei Beschleunigung, da ihre Membran eine Masse hat. Moderne Drucksensoren können beschleunigungskompensiert aufgebaut werden. Diese Kompensation basiert auf der Tatsache, dass das eigentliche Messelement sowohl Druck- als auch Beschleunigungsvorgänge misst. Ein zweites Messelement wird im Sensor so angeordnet, dass es lediglich Beschleunigungsvorgänge wahrnimmt. Um den „wahren“ Druckwert zu erhalten, wird das Beschleunigungssignal der zusätzlichen Elemente vom kombinierten Signal des eigentlichen (kombinierten) Drucksignals subtrahiert.
Für piezoelektrische Sensoren werden zwei wesentliche Materialgruppen eingesetzt: piezoelektrische Keramiken und einkristalline-Materialien. Keramiken (z. B. PZT-Keramiken) besitzen eine piezoelektrische Konstante, die zwei Größenordnungen über der der Kristallmaterialien liegt und die in Sinterprozesses hergestellt werden können. Allerdings ist die große Sensitivität mit einer schlechten Langzeitstabilität verbunden. Piezoelektrische Keramiken werden daher zumeist eingesetzt, wenn die Anforderungen an die Messgenauigkeit und Langzeitstabilität nicht zu hoch sind. Weniger sensitive einkristalline Materialien (Quarz, Turmaline und Galliumphosphat) haben wesentlich höhere – und nahezu unendliche – Langzeitstabilitäten.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.