Loading AI tools
Bahnberechnung in der Himmelsmechanik Aus Wikipedia, der freien Enzyklopädie
Das Dreikörperproblem der Himmelsmechanik besteht darin, eine Lösung (Vorhersage) für den Bahnverlauf dreier Körper unter dem Einfluss ihrer gegenseitigen Anziehung (Newtonsches Gravitationsgesetz) zu finden. Um quantitative Resultate zu erlangen, muss es im allgemeinen Fall bislang numerisch gelöst werden.
Das Dreikörperproblem galt seit den Entdeckungen von Johannes Kepler und Nikolaus Kopernikus als eines der schwierigsten mathematischen Probleme, mit dem sich im Laufe der Jahrhunderte viele bekannte Mathematiker wie Alexis-Claude Clairaut, Leonhard Euler, Joseph-Louis Lagrange, Thorvald Nicolai Thiele, George William Hill und Henri Poincaré beschäftigten. Im allgemeinen Fall erfolgt die Bewegung chaotisch und kann nur numerisch berechnet werden.
Die beiden Grafiken zeigen ein Beispiel für eine Simulationsrechnung. In kleinen Zeitintervallschritten werden die angreifenden Gravitationskräfte und daraus die Verschiebung berechnet. Selbst bei identischen Ausgangsbedingungen erhält man völlig verschiedene Prognosen, wenn die Länge der Zeitintervalle variiert.
Den Spezialfall, dass einer der drei Körper eine verschwindend kleine Masse hat und seine Wirkung auf die beiden anderen vernachlässigt werden kann, bezeichnet man als eingeschränktes Dreikörperproblem.
Das Zweikörperproblem ist durch die Kepler’schen Gesetze analytisch lösbar. Dagegen sind die Integrale im Fall von mehr als zwei Himmelskörpern nicht mehr algebraisch integrierbar,[1] also nicht mehr mit elementaren Funktionen darstellbar. Karl Frithiof Sundman konnte Anfang des 20. Jahrhunderts als Erster eine analytische Lösung des Dreikörperproblems in Form einer konvergenten Potenzreihe angeben, unter der Annahme, dass der Gesamtdrehimpuls des Systems nicht verschwindet und es deshalb nicht zu einem Dreierstoß kommt, bei dem der Abstand aller drei Körper Null beträgt. Für praktische Berechnungen ist Sundmans Lösung allerdings nicht brauchbar, da bei der Summe mindestens 10 hoch 8.000.000 Terme berücksichtigt werden müssten, um eine hinreichende Genauigkeit zu erzielen.[2]
Die Stabilität eines Dreikörpersystems wird durch das Kolmogorow-Arnold-Moser-Theorem beschrieben.
Näherungs- oder exakte Lösungen sind in manchen Fällen möglich:
Die Verallgemeinerung des Dreikörperproblems ist das Mehrkörperproblem. Allgemeine Mehrkörperprobleme behandelt man durch Mehrkörpersimulationen.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.