Loading AI tools
statistischer Schätzer, dessen Wahrscheinlichkeit sich mit zunehmender Stichprobengröße einem wahren Parameter annähert Aus Wikipedia, der freien Enzyklopädie
Als eine konsistente Schätzfolge bezeichnet man in der Schätztheorie, einem Teilgebiet der mathematischen Statistik, eine Folge von Punktschätzern, die sich dadurch auszeichnet, dass sie bei größer werdender Stichprobe den zu schätzenden Wert immer genauer schätzt.
Je nach Konvergenzart unterscheidet man schwache Konsistenz (Konvergenz in Wahrscheinlichkeit), starke Konsistenz (fast sichere Konvergenz) sowie -Konsistenz (Konvergenz im p-ten Mittel) mit dem Spezialfall Konsistenz im quadratischen Mittel (Konvergenz im quadratischen Mittel, Sonderfall der Konvergenz im p-ten Mittel für ). Wird von Konsistenz ohne einen Zusatz gesprochen, so ist meist die schwache Konsistenz gemeint. Alternativ finden sich auch die Bezeichnungen konsistente Folge von Schätzern und konsistenter Schätzer, wobei Letzteres fachlich nicht korrekt ist. Allerdings ist die Konstruktion als Folge meist nur dadurch bedingt, dass die größer werdende Stichprobe formalisiert werden muss. Die der Folge zugrundeliegende Idee bleibt meist unverändert.
Das Konzept der Konsistenz lässt sich auch für statistische Tests formulieren, man spricht dann von konsistenten Testfolgen.
Ein konsistenter Schätzer muss nicht asymptotisch unverzerrt sein (vergleiche Stichprobenschätzer).
Gegeben sei ein statistisches Modell
und eine Folge von Punktschätzern in einen Ereignisraum
die nur von den ersten Beobachtungen abhängen. Sei
eine zu schätzende Funktion.
Die Folge heißt eine schwach konsistente Schätzfolge oder einfach eine konsistente Schätzfolge, wenn sie für jedes in Wahrscheinlichkeit gegen konvergiert. Es gilt also
für alle und alle . Unabhängig davon, welches der Wahrscheinlichkeitsmaße wirklich vorliegt, ist also für beliebig groß werdende Stichproben die Wahrscheinlichkeit, dass der geschätzte Wert sehr nah an dem zu schätzenden Wert liegt, gleich 1.
Die weiteren Konsistenzbegriffe unterscheiden sich nur bezüglich der verwendeten Konvergenzart von dem obigen schwachen Konsistenzbegriff. So heißt die Folge
Detaillierte Beschreibungen der Konvergenzarten sind in den entsprechenden Hauptartikeln zu finden.
Aufgrund der Eigenschaften der Konvergenzarten gilt: Sowohl aus der starken Konsistenz als auch aus der Konsistenz im p-ten Mittel folgt die schwache Konsistenz; alle anderen Implikationen sind im Allgemeinen falsch.
Wichtige Hilfsmittel, um starke und schwache Konsistenz zu zeigen, sind das starke Gesetz der großen Zahlen und das schwache Gesetz der großen Zahlen.
Es lässt sich zeigen, dass der Kleinste-Quadrate-Schätzer , der durch die Methode der kleinsten Quadrate gewonnen wird, konsistent für ist, d. h., für ihn gilt
Die grundlegende Annahme, um die Konsistenz des KQ-Schätzers sicherzustellen, ist die Konvergenz
gegen eine invertierbare Matrix , d. h. man geht insbesondere also davon aus, dass das durchschnittliche Quadrat der beobachteten Werte der erklärenden Variablen auch bei einem ins Unendliche gehendem Stichprobenumfang endlich bleibt (siehe Produktsummenmatrix#Asymptotische Resultate). Außerdem nimmt man an, dass
Die Konsistenz kann wie folgt gezeigt werden:[1]
Hierbei wurde das Slutsky-Theorem und die Eigenschaft verwendet, dass, wenn deterministisch bzw. nichtstochastisch ist, gilt.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.