Kapillarität
Wikimedia-Begriffsklärungsseite Aus Wikipedia, der freien Enzyklopädie
Kapillarität ist in der Oberflächenphysik die Mechanik deformierbarer Grenzflächen zwischen zwei nicht mischbaren Phasen.[1] Hierbei können beide Phasen Flüssigkeiten sein; ebenso kann es sich um Grenzflächen zwischen einer Flüssigkeit und einem Gas handeln. Unter Kapillarität werden Phänomene zusammengefasst, die maßgeblich von der Oberflächenspannung der beteiligten kondensierten Phasen beziehungsweise der Grenzflächenenergie der deformierbaren Grenzfläche beeinflusst werden.
Gekrümmte deformierbare Grenzflächen
Häufig werden zwei fluide Phasen durch eine gekrümmte Grenzfläche getrennt. Beispiele für derartige gekrümmte Grenzflächen sind die Oberflächen von Menisken und Tropfen. Fluide tendieren zur hydrodynamischen Ausbildung gekrümmter Oberflächen, um ihr Oberflächen-Volumen-Verhältnis zu minimieren. Ein Beispiel hierfür ist die Umwandlung von Flüssigkeitsfäden in Ketten aus Tropfen durch die Plateau-Rayleigh-Instabilität.[2][3][4]
Über gekrümmte Grenzflächen zwischen zwei fluiden Phasen hinweg besteht eine Druckdifferenz. Dabei hat die konvex eingefasste Phase einen höheren Druck als die konkav eingefasste Phase. Die konvex eingefasste Phase kann dabei mit einem aufgeblasenen Luftballon verglichen werden, der seine Form nur durch den Überdruck im Inneren behält.[5] Die Druckdifferenz über die gekrümmte Grenzfläche hinweg wird als Laplace-Druck bezeichnet und durch die Young-Laplace-Gleichung mit der Grenzflächenenergie und den beiden prinzipiellen Krümmungsradien der gekrümmten Grenzfläche in Beziehung gesetzt. Die Kelvin-Gleichung beschreibt den Dampfdruck über einer gekrümmten Oberfläche.
Kapillare Transport-Phänomene
Kapillarität liegt mehreren grenzflächennahen Transport-Phänomenen zugrunde, die durch lokale Unterschiede der Grenzflächenspannung verursacht werden. Beispiele für kapillare Transportprozesse sind thermokapillare Konvektion (Marangoni-Effekt),[6][7] Solutokapillarität[7] sowie der Kaffeering-Effekt.[8][9] Das Verhalten elektrisch geladener Grenzflächen unter dem Einfluss eines tangentialen elektrischen Feldes bezeichnet man als Elektrokapillarität.[10][11]
Kapillarwellen
Kapillarwellen sind transversale mechanische Wellen, die in Form propagierender Schwingungen deformierbarer Grenzflächen auftreten. Die Eigenschaften von Kapillarwellen, wie etwa die Ausbreitungsgeschwindigkeit, werden maßgeblich durch die Oberflächenenergien der beteiligten kondensierten Phasen beziehungsweise den Grenzflächenenergien der deformierbaren Grenzflächen bestimmt.
Deformierbare Grenzflächen in Kontakt mit festen Oberflächen
Kapillarität spielt eine bedeutende Rolle für das Verhalten von Flüssigkeiten in Kontakt mit Oberflächen einer anderen kondensierten Phase. So werden Benetzungs- und Entnetzungs-Prozesse sowie Imbibition und der Kapillareffekt maßgeblich durch Kapillarität beeinflusst. Auf nanoskopischen Längenskalen wird Kapillarität durch dünne Benetzungsfilme sowie den disjoining pressure (Druck, der die Entfernung zwischen den Oberflächen eines dünnen Benetzungsfilms vergrößert und zu einer Erhöhung der Filmdicke führt) beeinflusst.[11] Die Deformation elastischer Körper unter dem Einfluss von Kapillarität beziehungsweise die Wechselwirkung zwischen Kapillarität und Elastizität wird als Elastokapillarität bezeichnet.[11][12]
Kapillarkondensation
Kapillarität liegt auch der Kapillarkondensation zugrunde. Sie tritt bei mineralischen Baustoffen etwa im Mikroporenbereich bei Porendurchmessern zwischen 2 × 10−9 und 10−7 auf und beruht auf Verringerung des Sättigungsdampfdrucks über konkav gekrümmten Menisken nach dem Gesetz von Kelvin-Thomson.[13]
Siehe auch
Einzelnachweise
Wikiwand - on
Seamless Wikipedia browsing. On steroids.