Loading AI tools
Graph-Invariante Aus Wikipedia, der freien Enzyklopädie
Als Gradfolge (oder auch Valenzsequenz bzw. Gradsequenz) eines einfachen Graphen bezeichnet man in der Graphentheorie die aufsteigende Folge der Knotengrade aller Knoten eines Graphen.
Die Gradfolge eines einfachen Graphen mit den Knoten und Knotengraden ist die Folge natürlicher Zahlen
wobei für alle jeweils den Grad des Knotens angibt. Eine aufsteigende Folge natürlicher Zahlen heißt graphisch, wenn mindestens ein einfacher Graph existiert, der diese Gradfolge aufweist.
Das Haus vom Nikolaus hat mit der Knotennummerierung im nebenstehenden Bild die Knotengrade und . Eine Sortierung nach dem Grad ergibt dann die zugehörige Gradfolge .
Die Folge ist graphisch, da der eingangs gezeigte Graph genau diese Grade hat. Die Folge ist aber beispielsweise nicht graphisch, da kein einfacher Graph mit drei Ecken existieren kann, der einen Knoten mit Grad vier hat.
Gradfolgen werden in der Graphentheorie beim Hamiltonkreisproblem betrachtet, insbesondere bei einem Satz von Vašek Chvátal, der Aussagen über die Existenz von Hamiltonkreisen durch die Betrachtung von Gradfolgen folgert.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.