Ein Dynkin-System (manchmal auch λ-System genannt) ist ein Begriff aus der Maßtheorie, einem Teilgebiet der Mathematik. Es ist benannt nach dem russischen Mathematiker Eugene Dynkin. Sie sind in Kombination mit dem Dynkinschen π-λ-Satz ein wichtiges Hilfsmittel zur Herleitung von Eindeutigkeitsaussagen in der Maßtheorie und Stochastik (siehe Maßeindeutigkeitssatz).

Definition

Eine Teilmenge der Potenzmenge einer Grundmenge heißt Dynkin-System über , falls sie die folgenden Eigenschaften besitzt:[1]

  • Das System enthält die Grundmenge:
.
  • Das System ist abgeschlossen unter Bildung von Komplementen:
.
disjunkt

δ-Operator

Beliebige Durchschnitte von Dynkin-Systemen über ergeben wieder ein Dynkin-System. Ist daher ein Mengensystem, dann wird durch

ein Dynkin-System definiert, genannt das von erzeugte Dynkin-System. Es ist das kleinste Dynkin-System, welches enthält. heißt Erzeuger von .

Der δ-Operator ist ein Hüllenoperator. Teilweise wird er entsprechend der Namensgebung als -System auch als -Operator notiert. Weitere alternative Bezeichnungen sind oder .

Das Dynkin-System-Argument

Zusammenfassung
Kontext

Mit Dynkin-Systemen lassen sich in vielen Fällen Aussagen über σ-Algebren relativ einfach beweisen. Sei eine Aussage, die für Mengen entweder zutrifft oder nicht. Weiter sei eine σ-Algebra mit einem durchschnittsstabilen Erzeuger , für dessen Elemente man zeigen kann. Nach dem Prinzip der guten Mengen betrachtet man nun das Mengensystem und zeigt, dass es ein Dynkin-System ist. Dann folgt wegen der Durchschnittsstabilität von einerseits , andererseits gilt aber auch und damit wegen schon .

Die definierenden Eigenschaften eines Dynkin-Systems sind oft einfacher nachzuweisen, weil bei der Abgeschlossenheit gegenüber abzählbarer Vereinigung nur Folgen von paarweise disjunkten Einzelmengen betrachtet werden müssen, während bei σ-Algebren diese Zusatzeigenschaft nicht zur Verfügung steht.

Zusammenhang mit weiteren Mengensystemen

Zusammenfassung
Kontext
Thumb
Hierarchie der in der Maßtheorie verwendeten Mengensysteme

σ-Algebren

Jede σ-Algebra ist immer auch ein Dynkin-System. Umgekehrt ist jedes durchschnittsstabile Dynkinsystem auch eine σ-Algebra. Ein Beispiel[2] für ein Dynkin-System, das keine σ-Algebra ist, ist

auf der Grundmenge . Das Mengensystem ist ein Dynkin-System, aber keine Algebra (da nicht schnittstabil) und damit auch keine σ-Algebra.

Es gilt außerdem der dynkinsche π-λ-Satz: Ist ein durchschnittsstabiles Mengensystem, so stimmen die von erzeugte σ-Algebra und das von erzeugte Dynkin-System überein.

Monotone Klassen

Dynkin-Systeme lassen sich auch über monotone Klassen definieren: Ein Mengensystem ist genau dann ein Dynkin-System, wenn eine monotone Klasse ist, welche die Obermenge enthält und in der für beliebige Mengen mit auch gilt.

Literatur

Einzelnachweise

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.