Loading AI tools
Aus Wikipedia, der freien Enzyklopädie
Der Elliptic Curve Digital Signature Algorithm (ECDSA) ist eine Variante des Digital Signature Algorithm (DSA), die Elliptische-Kurven-Kryptographie verwendet.
Generell gilt bei der Elliptische-Kurven-Kryptographie die Faustregel, dass die Bitlänge des Erzeugers der verwendeten Untergruppe etwa dem Doppelten des Sicherheitsniveaus entsprechen sollte. Bei einem Sicherheitsniveau von Bit, bei dem ein Angreifer elementare Operationen durchführen muss, um den privaten Schlüssel zu finden, hätte ein DSA-Schlüssel eine Länge von circa 1024 Bit, ein ECDSA-Schlüssel aber nur eine Länge von 160 Bit. Eine Signatur ist jedoch bei beiden Verfahren gleich lang: Bit, also 320 Bit für ein Sicherheitsniveau von 80 Bit.
Alice möchte eine signierte Nachricht an Bob schreiben. Zu Beginn muss man sich auf die Kurvenparameter einigen. Die ersten Parameter beschreiben die verwendete Kurve: ist die Ordnung des Körpers, auf dem die Kurve definiert ist; ist die Angabe der verwendeten Basis; und sind zwei Körperelemente, die die Gleichung der Kurve beschreiben; ist eine mögliche, zufällig erzeugte Zeichenkette, die vorliegt, wenn die Kurve nachweislich zufällig erzeugt wurde. Weiterhin werden benötigt:
Um ihr Schlüsselpaar zu generieren, erzeugt Alice als geheimen Schlüssel eine zufällige Ganzzahl im Intervall . Der zugehörige öffentliche Schlüssel ist .
Will Alice eine Nachricht signieren, geht sie folgendermaßen vor:
Wenn berechnet wird, sollte der Wert , der aus stammt, in eine Ganzzahl umgewandelt werden. Dabei ist zu beachten, dass größer als sein kann, aber nicht länger.[1]
Es ist entscheidend, dass für verschiedene Signaturen auch verschiedene -Werte verwendet werden, ansonsten kann die Gleichung im Schritt 4 nach dem geheimen Schlüssel aufgelöst werden: Aus zwei Signaturen und , die mit demselben, unbekannten verschiedene bekannte Nachrichten und signieren, kann ein Angreifer und berechnen. Weil entspricht (alle Operationen in diesem Absatz werden mit modulo durchgeführt), kann dann auch berechnet werden. Aus kann der Angreifer wegen auch den privaten Schlüssel berechnen. Dieser Fehler in der Verschlüsselung wurde z. B. verwendet, um die Verschlüsselung in der Spielkonsole PlayStation 3 zu berechnen und damit die Beschränkung auf offiziell veröffentlichte Software auszuhebeln.[2]
Wenn Bob die Echtheit einer von Alice erzeugten Signatur prüfen möchte, muss er eine Kopie ihres öffentlichen Schlüssels besitzen. Wenn er sich nicht sicher ist, dass ordnungsgemäß erzeugt wurde, muss er überprüfen, ob es sich wirklich um einen Schlüssel handelt (das neutrale Element wird mit bezeichnet):
Danach führt Bob folgende Schritte durch:
Mit Hilfe von Straus’ Algorithmus (auch bekannt als Shamir's Trick) kann die Summe zweier skalarer Multiplikationen () schneller berechnet werden.[3][4]
Der Standard X9.62-2005 des American National Standards Institute ist die maßgebliche Spezifikation von ECDSA, die von den nachfolgend genannten Standards als Referenz verwendet wird.[5]
Das US-amerikanische National Institute of Standards and Technology empfiehlt im Standard FIPS 186-4 fünfzehn elliptische Kurven.[6]
Die Standards for Efficient Cryptography Group (SECG) ist ein 1998 gegründetes Konsortium zur Förderung des Einsatzes von ECC-Algorithmen, welches im Dokument SEC1 auch den ECDSA spezifiziert.[7]
Die International Organization for Standardization und die International Electrotechnical Commission definiert ECDSA in dem internationalen Standard ISO/IEC 14888-3[8] (der ältere Standard 15946-2 wurde 2007 zurückzogen). Darin werden neben EC-DSA (die im Standard verwendete Abkürzung) noch die Varianten EC-GDSA (Elliptic Curve German Digital Signature Algorithm), EC-KCDSA (Korean Certificate-based Digital Signature Algorithm), EC-RDSA (Russian Digital Signature Algorithm), EC-SDSA und EC-FSDSA (Schnorr und Full Schnorr Digital Signature Algorithm) spezifiziert.
Das Bundesamt für Sicherheit in der Informationstechnik legt in der Technischen Richtlinie TR-03111[9] Vorgaben und Empfehlungen u. a. für die Implementierung des ECDSA fest.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.