Loading AI tools
mathematische Funktion Aus Wikipedia, der freien Enzyklopädie
Eine Copula (Pl. Copulas oder Copulae) ist eine Funktion, die einen funktionalen Zusammenhang zwischen den Randverteilungsfunktionen verschiedener Zufallsvariablen und ihrer gemeinsamen Wahrscheinlichkeitsverteilung angeben kann.
Mit ihrer Hilfe kann man stochastische Abhängigkeit deutlich flexibler modellieren als beispielsweise mit Korrelationskoeffizienten.
Eine Copula ist eine multivariate Verteilungsfunktion , deren eindimensionale Randverteilungen gleichverteilt über dem Intervall sind. Formal ausgedrückt bedeutet dies folgendes:
Die Forderung an die Randverteilungen lässt sich wie folgt motivieren: Für beliebig verteilte Zufallsvariablen mit stetigen Verteilungen ist die Zufallsvariable gleichverteilt über dem Intervall . Zusammen mit dem folgenden Satz von Sklar wird die Trennung von Randverteilungen und Abhängigkeiten unter diesen möglich.
Im Folgenden sei eine Erweiterung der reellen Zahlen.
Sei eine -dimensionale Verteilungsfunktion (Multivariate Verteilungsfunktion) mit eindimensionalen Randverteilungen . Dann existiert eine -dimensionale Copula , sodass für alle gilt:
Sind alle stetig, so ist die Copula eindeutig.
Für jede -variate Copula gilt die untere Fréchet-Hoeffding-Schranke
und die obere Fréchet-Hoeffding Schranke
Die obere Schranke ist selbst eine Copula, die untere Schranke hingegen nur für .
Copulae werden eingesetzt, um Rückschlüsse auf die Art der stochastischen Abhängigkeit verschiedener Zufallsvariablen zu erzielen oder um Abhängigkeiten gezielt zu modellieren. Sie werden beispielsweise in der Kreditrisikoanalyse eingesetzt, um Aussagen über einen gehäuften Bankrott mehrerer Schuldner innerhalb eines Anleihenportfolios machen zu können. Analog sind Anwendungen im Versicherungsbereich üblich. Dort stellen gehäuft auftretende Schäden verschiedener Schadenarten ein finanzielles Problem dar. Beispiel hierfür ist ein zu beobachtender Zusammenhang zwischen Sturm- und Hochwasserschäden. Eine weitere zentrale Anwendung im Bereich der Finanzmathematik ist die Modellierung von operationellen Risiken und die Modellierung der Abhängigkeiten zwischen den Risikoarten (Kredit- und Marktrisiko, Versicherungsrisiko und Kreditrisiko etc.).
Archimedische Copulae stellen eine Klasse von Copulae dar. Diese lassen sich wie folgt beschreiben:
Sei eine stetige, streng monoton fallende Funktion mit . Bezeichne die Pseudo-Inverse von , d. h.
Mit Hilfe von und lässt sich nun eine bivariate Funktion definieren:
Die Funktion ist genau dann eine Copula, wenn konvex ist. In diesem Fall heißt Erzeuger oder Generator der Copula. Offensichtlich ist symmetrisch, d. h. für alle .
Beispiele für archimedische Copulae sind:
Archimedische Copulae werden oft angewandt, da es sehr einfach ist, Zufallszahlen daraus zu generieren.
Eine Copula heißt Extremwertcopula, wenn es die Copula einer multivariaten Extremwertverteilung ist, d. h. es existiert eine multivariate Extremwertverteilung mit univariaten Rändern , dass gilt .
Eine Copula ist genau dann eine Extremwertcopula, wenn für und gilt .
Ist eine Extremwertcopula und sind univariate Extremwertverteilungen, dann ist eine multivariate Extremwertverteilung.
Jede bivariate assoziative und kommutative Copula ist eine T-Norm (siehe Grabisch et al. 2009). Beispielsweise sind die bivariate Produktcopula und beide bivariaten Fréchet-Hoeffding-Schranken gleichzeitig T-Normen.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.