Loading AI tools
mathematische Struktur in der Funktionalanalysis Aus Wikipedia, der freien Enzyklopädie
Eine Von-Neumann-Algebra oder W*-Algebra ist eine mathematische Struktur in der Funktionalanalysis. Historisch beginnt die Theorie der Von-Neumann-Algebren mit den grundlegenden von 1936 bis 1943 erschienenen Arbeiten von Francis J. Murray und John von Neumann On rings of operators.[1][2][3] Der Name Von-Neumann-Algebra für derartige Algebren geht auf einen Vorschlag von Jean Dieudonné zurück.[4]
Eine Von-Neumann-Algebra (benannt nach John von Neumann) oder (mittlerweile veraltet) ein Ring von Operatoren ist eine *-Unteralgebra mit Eins der Algebra der beschränkten linearen Operatoren eines Hilbertraums , die eine (und damit alle) der drei folgenden äquivalenten Bedingungen erfüllt:
Hierbei ist die Kommutante von und entsprechend die Kommutante von .
Die Äquivalenz der drei obigen Aussagen nennt man den von Neumannschen Doppelkommutantensatz oder Bikommutantensatz. Diese Aussage kann wie folgt verschärft werden:
Auch diese Formulierung, die eine Äquivalenz zwischen der rein algebraischen Kommutanten-Bildung und der rein topologischen Dichte-Beziehung bzw. Abschluss-Bildung herstellt, wird als Bikommutantensatz bezeichnet. Damit erweist sich der Bikommutantensatz als ein Dichtheitssatz. Zusammen mit dem weiteren Dichtheitssatz von Kaplansky stellt er den Ausgangspunkt der Theorie der Von-Neumann-Algebren dar.
Eine Von-Neumann-Algebra kann nach einem Satz von Shōichirō Sakai auch abstrakt ohne einen zugrundeliegenden Hilbertraum definiert werden:
Die Von-Neumann-Algebra heißt Faktor, falls sie eine der beiden folgenden äquivalenten Bedingungen erfüllt:
Da die Menge der Operatoren aus ist, die mit allen Operatoren aus kommutieren, ist das Zentrum von . Faktoren sind daher die Von-Neumann-Algebren mit kleinst möglichem Zentrum. Man kann Von-Neumann-Algebren als direktes Integral (eine Verallgemeinerung der direkten Summe) von Faktoren darstellen, das heißt, Von-Neumann-Algebren sind in diesem Sinne aus Faktoren zusammengesetzt.
und sind Beispiele für Faktoren. Mit ist auch ein Faktor; offenbar gilt und .
Bei den Faktoren können 3 Typen, die Typ I, Typ II und Typ III heißen, unterschieden werden.
Sei ein -endlicher Maßraum. Dann ist L2 ein Hilbertraum, und jede wesentlich beschränkte Funktion definiert via Multiplikation einen Operator . Die Menge aller ist eine kommutative Von-Neumann-Algebra , und die Abbildung ist ein *-Isomorphismus . Man kann zeigen, das heißt, die Algebra stimmt mit ihrem Kommutanten überein. Keine echte Oberalgebra kann daher kommutativ sein, ist also eine maximale kommutative Von-Neumann-Algebra.
Betrachtet man speziell den Maßraum (Einheitsintervall mit dem Lebesgue-Maß), so kann man zeigen, dass der Bikommutant von mit zusammenfällt. Der Übergang vom topologischen Konstrukt zum maßtheoretischen Konstrukt entspricht dem Übergang von C*-Algebren zu Von-Neumann-Algebren. Während man bei C*-Algebren wegen des Satzes von Gelfand-Neumark von nicht-kommutativer Topologie spricht, gibt die hier angestellte Betrachtung Anlass, eine Von-Neumann-Algebra als einen nicht-kommutativen Maßraum anzusehen, man spricht daher auch von nicht-kommutativer Maßtheorie.
Jede Von-Neumann-Algebra ist eine C*-Algebra und somit auch eine Banachalgebra.
Wie sich aus dem beschränkten Borel-Funktionalkalkül ergibt, enthalten Von-Neumann-Algebren sehr viele Orthogonalprojektionen; jeder Operator ist in der Normtopologie Limes von Linearkombinationen von Orthogonalprojektionen. Dies ist ein wesentlicher Unterschied zu den C*-Algebren, die, wie das Beispiel C([0,1]) zeigt, neben 0 und 1 keine weiteren Projektionen enthalten müssen. Man kann aus der Menge der Projektionen einen Verband konstruieren; die Struktur dieses Verbandes wird zur Typklassifikation der Von-Neumann-Algebren herangezogen.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.