prädikatenlogischer Operator Aus Wikipedia, der freien Enzyklopädie
Ein Quantor oder Quantifikator, die Re-Latinisierung des von C. S. Peirce eingeführten Ausdrucks „quantifier“,[1] ist ein Operator der Prädikatenlogik. Neben den Junktoren sind die Quantoren Grundzeichen der Prädikatenlogik. Allen Quantoren gemeinsam ist, dass sie Variablen binden.
Die beiden gebräuchlichsten Quantoren sind der Existenzquantor (in natürlicher Sprache zum Beispiel als „mindestens ein“ ausgedrückt) und der Allquantor (in natürlicher Sprache zum Beispiel als „alle“ oder „jede/r/s“ ausgedrückt). Andere Arten von Quantoren sind Anzahlquantoren wie „ein“ oder „zwei“, die sich auf Existenz- beziehungsweise Allquantor zurückführen lassen, und Quantoren wie „manche“, „einige“ oder „viele“, die auf Grund ihrer Unbestimmtheit, im Gegensatz etwa zu „alle“ oder „kein(e)“,[2] in der klassischen Logik nicht verwendet werden.
Der Existenzquantor wird durch das Zeichen ∃ (ein horizontal gespiegeltes, zumeist serifenloses „E“) oder durch das Zeichen dargestellt, manchmal (vor allem in maschinengeschriebenen Texten) als geklammertes gewöhnliches „E“. Der Allquantor wird durch das Zeichen ∀ (ein auf den Kopf gestelltes, zumeist serifenloses „A“) oder das Zeichen oder einfach durch eine in Klammern gesetzte Variable dargestellt.
Schreibweise | Variante 1 | Variante 2 | Sprechweise | Gebräuchliche Bezeichnungen |
„Für (mindestens) ein/einige/manche x gilt …“
bzw. „Es existiert/gibt (mindestens) ein x, für das gilt …“ |
Existenzquantor, Existenzialquantifikator, Partikularisator, Einsquantor, Manchquantor | |||
„Für alle/jedes x gilt …“ | Allquantor, Universalquantor, Universalquantifikator, Generalisator | |||
Die Schreibweise (nicht den Existenzquantor selbst) führte Giuseppe Peano 1897 im ersten Band seines Formulaire de mathématiques ein;[3] verbreitet wurde sie durch ihre Verwendung in den Principia Mathematica, dem ab 1910 erschienenen Grundlagenwerk Russells und Whiteheads. Die Schreibweise (nicht den Allquantor selbst) führte Gerhard Gentzen 1934 ein.[4]
Die Schreibweise des Allquantors in Variante 1 geschieht in Anlehnung an das logische Und (gilt eine Aussage für alle , so gilt es für ) ebenso, wie die Schreibweise des Existenzquantors in Variante 1 an das logische Oder angelehnt ist (existiert ein , für das die Aussage gilt, so gilt die Aussage für ). Aus dieser Analogie kann man die Regeln für die Verneinung einer Aussage, welche einen Allquantor oder einen Existenzquantor enthält, unter Verwendung der De Morganschen Gesetze erhalten.
Manche Autoren verstehen einen subtilen Unterschied zwischen der Schreibweise , und Variante 1, der allerdings nur im Currying besteht, also nicht im Ergebnis, sondern in der Reihenfolge, wie die Quantoren auf ihre Argumente wirken. Um Eindeutigkeit herzustellen, muss bei beiden Schreibweisen daher ggf. unterschiedlich geklammert werden.
Die Menge der betrachteten Elemente wird als „Individuenbereich“ bezeichnet.
Die Aussage ist wahr, wenn es mindestens ein x gibt, das die Eigenschaft F hat. Die Aussage ist also auch dann wahr, wenn alle x F sind und die Grundmenge, über die quantifiziert wird, nicht leer ist. Die Aussage ist wahr, wenn alle x F sind, sonst falsch.
Es erscheint naheliegend, den Existenzquantor als Verkettung von Disjunktionen („oder“) und den Allquantor als Verkettung von Konjunktionen („und“) aufzufassen. Gehen wir davon aus, dass x als Wert eine natürliche Zahl annehmen kann, so ist man versucht zu schreiben:
Der entscheidende Unterschied ist aber, dass die Variable des Quantors bei unendlich großem Individuenbereich potentiell unendlich viele Werte annehmen kann, während eine Konjunktion oder Disjunktion niemals unendlich lang werden kann. Daher muss man sich bei obigem Beispiel auch am Ende der Konjunktion bzw. Disjunktion mit Punkten (für „usw.“) behelfen.
Wenn die Leerstelle eines einstelligen Prädikats durch einen Quantor gebunden wird, entsteht bereits eine fertige Aussage. Es gibt daher nur zwei Möglichkeiten, ein einstelliges Prädikat mittels eines Quantors in eine Aussage zu überführen: Allquantifizierung und Existenzquantifizierung.
Am Beispiel des einstelligen Prädikats „_ ist rosa“, das hier als „F(_)“ formalisiert werden soll:
Beim Formalisieren sprachlicher Äußerungen verbindet sich der Existenzquantor auf natürliche Weise mit dem „und“ (Konjunktion) und der Allquantor mit dem „wenn–dann“ (materiale Implikation)
In der klassischen Logik lässt sich jeder der beiden Quantoren durch den jeweils anderen ausdrücken:
Auf Grund obiger Äquivalenzen kann man sich damit begnügen, in einer formalen Sprache für die klassische Prädikatenlogik nur einen der beiden Quantoren als Grundzeichen zu verwenden und den anderen Quantor gegebenenfalls durch diesen zu definieren.
Bei der Formalisierung einer Allaussage ist zu beachten, dass gemäß den Bedeutungsfestlegungen von Allquantor und Implikation eine Aussage „Für alle x: Wenn A(x), dann B(x)“ bereits wahr ist, wenn es keine A gibt. Demnach ist also beispielsweise die Aussage:
wahr, weil es keine eckigen Kreise gibt.
Dies führt dazu, dass manche Schlussfolgerungen der aristotelischen Syllogistik nicht gültig sind, wenn man deren Allaussagen mit den modernen Quantoren identifiziert.
Als Beispiel sei der so genannte Modus Barbari aufgeführt:
Nach moderner Auffassung wären die Prämissen beide wahr, wenn es überhaupt keine Schwabinger und Münchner gäbe. Dann wäre aber die Konklusion falsch: Da es keine Schwabinger gäbe, könnten dann auch nicht einige Schwabinger Bayern sein. Die Prämissen könnten also wahr sein und die Konklusion dennoch falsch, d. h., es handelte sich nicht um einen gültigen Schluss. Aristoteles hat wohl bei einer Aussage „Alle A sind B“ immer die Existenz von As vorausgesetzt, sodass die einfache Übersetzung seinen Absichten nicht gerecht wird. Welches die adäquate Interpretation und Übersetzung der syllogistischen Allaussagen ist, ist bis heute Gegenstand der Forschung; Informationen und Literaturhinweise gibt der Artikel Syllogismus.
Auch bei der einfachen Übersetzung als allquantifizierte Implikation gültig ist jedoch beispielsweise der so genannte Modus Barbara, nach dem aus den obigen Prämissen folgt:
Diese Aussage folgt, weil sie nach moderner Auffassung auch dann wahr wäre, wenn es gar keine Schwabinger gäbe.
Neben All- und Existenzquantor werden in der Logik gelegentlich Anzahlquantoren gebraucht. So lässt sich ausdrücken, dass es „genau ein“, „genau zwei“, ... Dinge gibt, für die irgendetwas gilt.
Im Unterschied zum Existenzquantor, der besagt, dass es mindestens ein gibt, für das etwas gilt, bedeutet der Eindeutigkeitsquantor oder Einzigkeitsquantor, dass es genau ein solches gibt (nicht mehr und nicht weniger). Für ihn schreibt man oder auch . Man kann diesen Quantor vermittels des All- und Existenzquantors sowie des Identitätszeichens „=“ wie folgt definieren:
in Worten:
Allgemein lassen sich analog zum Einzigkeitsquantor für auch Quantoren (bzw. ) definieren, die besagen, dass es genau verschiedene gibt. Insbesondere ist äquivalent zu .
definiert man entsprechend als , wofür manchmal auch der Quantor benutzt wird: „Es gibt kein mit ...“
Weitere Quantoren, wie „die meisten “ werden in der Logik nur selten behandelt. Ein Anwendungsgebiet für solche Quantoren ist die Semantik natürlicher Sprachen.
Seamless Wikipedia browsing. On steroids.