Transformationsgeometri er betegnelse for studiet af geometri ved hjælp af grupper af geometriske transformationer, og også navnet for en pædagogisk teori for undervisning af euklidisk geometri, idet begge er baseret på Erlangen-programmet. En geometri kan defineres som studiet af invarianter under bestemte grupper af geometriske transformationer.
- R.S. Millman – Kleinian transformation geometry, Amer. Math. Monthly 84 (1977)
- UNESCO - Studies in mathematics education. Teaching of geometry
- UNESCO - New trends in mathematics teaching, v.3, 1972
- Alexander Karp & Bruce R. Vogeli – Russian Mathematics Education: Programs and Practices, Volume 5, pps. 100–102.
- Nathalie Sinclair – The History of the Geometry Curriculum in the United States, pps. 63–66.
- Transformations teaching notes from Gatsby Charitable Foundation Arkiveret 30. december 2008 hos Wayback Machine
- Heinrich Guggenheimer (1967) Plane Geometry and Its Groups, Holden-Day.
- Roger Evans Howe & William Barker (2007) Continuous Symmetry: From Euclid to Klein, American Mathematical Society.
- Robin Hartshorne (2011) Review of Continuous Symmetry, American Mathematical Monthly 118:565–8.
- Roger Lyndon (1985) Groups and Geometry, #101 London Mathematical Society Lecture Note Series, Cambridge University Press.
- P.S. Modenov and A.S. Parkhomenko (1965) Geometric Transformations, translated by Michael B.P. Slater, Academic Press.
- George E. Martin (1982) Transformation Geometry: An Introduction to Symmetry, Springer Verlag.
- Isaak Yaglom (1962) Geometric Transformations, Random House.