Remove ads
From Wikipedia, the free encyclopedia
Den pythagoræiske læresætning beskriver forholdet mellem sidelængderne i en retvinklet trekant. Det er en af de grundlæggende sætninger i den euklidiske geometri. Den siger, at i alle retvinklede trekanter er summen af kateternes kvadrat lig hypotenusens kvadrat. Sætningen kan også udtrykkes som ligning, idet kateternes længder benævnes og og hypotenusens benævnes , ligesom på illustrationen:
Det er derfor muligt at beregne en sidelængde i en retvinklet trekant, når de to andre sidelængder er kendte. Fx findes hypotenusen ved at tage kvadratroden af summen af og s kvadrater, altså
Læresætningen er opkaldt efter Pythagoras. Princippet var velkendt både for egyptere og babylonere[1] længe før Pythagoras' tid, når det gjaldt en trekant med målene 3, 4 og 5; men Pythagoras beviste, at princippet gjaldt i alle tilfælde. [2]
Sæt af heltalige løsninger til den pythagoræiske læresætning kaldes pythagoræiske tal.
Der findes flere måder at bevise den pythagoræiske læresætning på.
Det omskrevne kvadrat har arealet:
Det samme areal kan beregnes som summen af arealerne af de fire trekanter og arealet af det indskrevne kvadrat:
Disse to forskellige udtryk for det samme areal sættes lig hinanden:
Denne ligning reduceres til:
Hermed er sætningen bevist.
Fra billedet . Og ved at erstatte ligninger (1) og (2):
Mangedobling for c:
Der findes imidlertid også en udvidet pythagoræisk læresætning, som gælder for alle trekanter, ikke kun de retvinklede. Denne kaldes cosinusrelationen. Den kaldes den udvidede Pythagoras, da den for det første i sin opbygning minder meget om Pythagoras' læresætning og desuden er beviset for sætningen baseret herpå.
Cosinusrelationerne er givet ved
hvor er vinklen mellem linjerne og . Her er det lige meget hvilke af siderne der benævnes med , og .
Den omvendte sætning af den pythagoræiske læresætning er også sand. Det vil sige at hvis længden af siderne i en trekant opfylder: :, så er vinkel C en ret vinkel, og derfor er trekanten retvinklet.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.