From Wikipedia, the free encyclopedia
V matematice se logika vyššího řádu odlišuje od predikátové logiky prvního řádu několika způsoby.
Jeden z nich je typ proměnných, přes které se kvantifikuje; v logice prvního řádu se kvantifikuje pouze pro proměnné pro individua a nelze kvantifikovat (volně řečeno) přes proměnné pro predikátové symboly. To lze v logice druhého řádu a dalších systémech.
Další vlastnost, kterou se logika vyššího řádu liší od logiky prvního řádu, jsou dovolené konstrukce v typové teorii, na které je (případně) založena. Predikát vyššího řádu je takový predikát, který má jeden nebo víc jiných predikátů jako argumenty. Obecně, predikát vyššího řádu, který má řád n, má jeden nebo víc predikátů řádu (n − 1) jako svoje argumenty (pro n > 1). Podobnou vlastnost mají funkce vyšších řádů, běžně využívané ve funkcionálním programování
Logiky vyšších řádů mají větší vyjadřovací sílu, ale kvůli svým vlastnostem, zvláště vzhledem k teorii modelů, mají méně vhodné chování pro mnoho aplikací. Gödel dokázal, že klasická logika vyššího řádu nedovoluje (rekurzivně axiomatizovatelný) korektní a úplný důkazový systém. Ale existuje takový důkazový systém, který je korektní a úplný vzhledem k Henkinovým modelům.
Příklady logik vyšších řádů jsou Churchova jednoduchá teorie typů (angl. 'Simple Theory of Types') a kalkulus konstrukcí (angl. 'calculus of constructions').
Logika druhého řádu reflektuje problémy axiomatizace ZF (Willard Van Orman Quine ji proto nazýval "teorií množin v rouše beránčím"), neboť v případě kvantifikace přes všechny možné predikáty (počínaje unárními) se pracuje s potenčními množinami, což může vést k překročení hranice mezi spočetnýmni a nespočetnými množinami. Z tohoto důvodu se v praktických aplikacích logik vyšších řádů používá tzv. obecná sémantika, ve které platí, že každá bezesporná teorie má spočetný model. Na druhou stranu Jaakko Hintikka dokázal, že jakákoliv logika řádu n>2 je ekvivalentní logice druhého řádu, rozšířením jazyka logiky druhého řádu tedy nezískáme expresivnější formalismus. Toto tvrzení dokázal Hintikka tím, že ukázal, jak v logice druhého řádu vyjádřit operátor potenční množiny—máme-li unární predikát I pro individua, S pro množiny a binární E pro náležení, následující konjunkce modeluje až na isomorfismus operátor potence:
V tomto článku byl použit překlad textu z článku Higher-order logic na anglické Wikipedii.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.