Kosinová věta

zobecnění Pythagorovy věty pro jakýkoliv trojúhelník From Wikipedia, the free encyclopedia

Kosinová věta
Remove ads
Remove ads

V trigonometrii je kosinová věta tvrzení o rovinných trojúhelnících, které umožňuje spočítat úhel v trojúhelníku na základě znalosti délek všech jeho tří stran (nebo pro výpočet délky strany, známe-li délky dvou zbylých stran a úhel mezi nimi). Podle kosinové věty pro každý rovinný s vnitřními úhly a stranami platí:[1]

Thumb
Úhly v α (u vrcholu A), β (u vrcholu B), a γ (u vrcholu C) jsou proti stranám a, b, c.

Pythagorova věta je speciální případ kosinové věty, protože pro pravý úhel platí , takže například pro získáme . Alternativní větou pro obecný trojúhelník je sinová věta.

Remove ads

Historie

Ačkoliv v Eukleidově době ještě nebyl znám pojem kosinus, popisují jeho Základy ze 3. století př. n. l. ranou geometrickou větu, která je téměř ekvivalentní zde popisované kosinové větě. Varianty pro tupoúhlé a ostroúhlé trojúhelníky (odpovídající zápornému a kladnému výsledku funkce kosinus) jsou řešeny samostatně v Knize druhé v částech Úloha XII a XIII.[2][3] Protože goniometrické funkce a algebra (zejména záporná čísla) v Eukleidově době ještě neexistovaly, jsou tato tvrzení založena na geometrických vztazích:

Úloha XII.
V trojúhelnících tupoúhlých čtverec strany proti úhlu tupému větší jest nežli čtverce stran tupý úhel svírajících o dvojnásobný pravoúhelník sevřený jedním ramenem úhlu tupého, na něž dopadá kolmice, a vnější úsečkou při úhlu tupém, již kolmice omezuje.

Eukleidés, Eukleidovy Základy, překlad František Servít.[3]

Výše citované Eukleidovo tvrzení lze zapsat pro tupoúhlý , jenž má tupý úhel a z vrcholu je vedena kolmice na prodlouženou stranu , takto:

Eukleidovy Základy připravily cestu k pozdějšímu objevu kosinové věty. V 15. století uvedl perský matematik a astronom Džamšid al-Kaši první znění kosinové věty ve formě vhodné pro moderní použití při triangulaci, k čemuž poskytl i přesné trigonometrické tabulky. V roce 2020 je ve Francii kosinová věta stále označována jako Formule d'Al-Kashi.[4][5][6][7]

V západním světě zpopularizoval kosinovou větu v 16. století francouzský matematik François Viète. Na počátku 19. století umožnila moderní algebraická notace zapsat kosinovou větu v její současné symbolické podobě.

Remove ads

Důkaz

Tvrzení kosinové věty lze snadno dokázat pomocí skalárního součinu.

Elementární důkaz se opírá o Pythagorovu větu a goniometrické funkce sinus a kosinus. Výpočet strany trojúhelníku je vhodné rozdělit podle velikosti daného úhlu (ostrý, pravý a tupý):

  • Je-li ostrý a bod patou výšky , pak bod náleží straně (pokud ne, prohodíme označení bodů a ). Vzdálenost paty od bodu označíme . Pak podle Pythagorovy věty je
.
Protože dále platí, že a , lze psát
,
,
,
.
  • Je-li pravý, pak a podle Pythagorovy věty platí
.
  • Je-li tupý a bod patou výšky , pak bod leží mimo . Vzdálenost paty od bodu označíme . Pak podle Pythagorovy věty je
.
Protože dále platí, že a , dostáváme
,
,
.
Remove ads

Kosinová věta ve sférickém trojúhelníku

Ve sférickém trojúhelníku platí kosinová věta v této podobě:

Thumb
Ortodroma

Tato podoba sférické kosinové věty se užívá v matematickém zeměpisu pro výpočet délky ortodromy („vzdušné“ vzdálenosti dvou míst na zemském povrchu):

kde

  • jsou zeměpisné šířky poměřovaných míst,
  • je rozdíl zeměpisných délek poměřovaných míst,
  • je ortodroma jako úhel mezi spojnicemi poměřovaných míst a středu Země.

Délku ortodromy pak lze vypočíst jako , je-li v radiánech, resp. , je-li ve stupních.

Remove ads

Související články

Odkazy

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads