typ zobrazení v matematice From Wikipedia, the free encyclopedia
Inverzní zobrazení k nějakému zobrazení přiřazuje prvkům z množiny B prvky množiny A, tedy obrazům zobrazení f jejich vzory. Laicky řečeno, inverzní zobrazení zobrazuje „opačným směrem“ než původní zobrazení. Je-li zobrazení funkcí, hovoříme o jeho inverzním zobrazení jako o inverzní funkci.
Je-li zobrazení, neboli , pak inverzní zobrazení je takové, že nebo také (zde a jsou ve smyslu relace). Z toho vyplývá, že zobrazení f musí být prosté, tzn. různým prvkům musí přiřazovat různé prvky – jinak by nebylo jednoznačně určeno, na co se má zobrazit prvek b v inverzním zobrazení.
Inverzní zobrazení je:
Ke každému vzájemně jednoznačnému zobrazení existuje zobrazení inverzní. Jestliže k nějakému zobrazení f existuje inverzní zobrazení, říkáme, že f je invertibilní nebo že vykazuje invertibilitu.
Neexistenci snadno spočítatelné inverzní funkce využívají jednosměrné funkce a hašovací funkce.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.