geometrické těleso From Wikipedia, the free encyclopedia
Kvádr je trojrozměrné těleso – rovnoběžnostěn, jehož stěny tvoří šest pravoúhlých čtyřúhelníků (zpravidla obdélníků, ale existují i speciální případy jako např. čtverec). Má tři skupiny rovnoběžných hran shodné délky.
Kvádr | |
---|---|
Objem | |
Povrch | |
Obrazec stěny | obdélník |
Počet vrcholů | 8 |
Počet hran | 12 |
Počet stěn | 6 |
Úhel u vrcholu | 90° |
Poloměr opsané kulové plochy | - |
Poloměr vepsané kulové plochy | - |
Duální mnohostěn | - |
Objem a povrch kvádru lze vypočítat z délky jeho hran jako:
Kvádr má tři různé délky stěnových úhlopříček, které jsou vlastně délkou úhlopříčky obdélníka ve vztahu k jeho stranám, a počítají se z Pythagorovy věty:
Všechny čtyři tělesové úhlopříčky jsou stejně dlouhé a protínají se ve středu souměrnosti. Délku tělesové úhlopříčky kvádru (tj. vzdálenost dvou vrcholů, které neleží ve stejné stěně) lze vypočítat rovněž z Pythagorovy věty:
Kvádr má šest stěn obdélníkového tvaru (ve speciálních případech 2 čtvercové + 4 obdélníkové nebo 6 čtvercových) z nichž dvě protilehlé jsou vždy shodné, osm vrcholů a dvanáct hran z nichž čtveřice rovnoběžných má vždy shodnou délku.
Kvádr je středově souměrný podle průsečíku svých úhlopříček.
Kvádr je osově souměrný podle tří os – spojnic středů protilehlých stěn.
Kvádr je rovinově souměrný podle tří rovin. Každá z těchto rovin je rovnoběžná s některou ze stěn kvádru a prochází průsečíkem úhlopříček kvádru.
Každé dvě stěny kvádru jsou rovnoběžné nebo kolmé.
Speciálním případem kvádru pro je pravidelný čtyřboký hranol. Ten má nejméně jednu dvojici protilehlých stěn čtvercovou – mluvíme o ní jako o základně nebo podstavě. O zbývajícím (potenciálně různém) rozměru pak mluvíme jako o výšce hranolu .
Vzorce pro objem a povrch se nám v tomto případě zjednodušují na:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.