unitat bàsica estructural i funcional de tots els organismes vius coneguts From Wikipedia, the free encyclopedia
Una cèl·lula (del llatí cellula, diminutiu de cella, 'cel·la') és la unitat bàsica estructural i funcional de tot ésser viu i, de fet, l'element més petit que es pot considerar viu. Els organismes es poden classificar en unicel·lulars o pluricel·lulars segons el seu nombre de cèl·lules, que en els organismes pluricel·lulars va des de 102 (certs nematodes) fins a 1017 (rorqual blau). En general, les cèl·lules tenen una mida de l'ordre de 10 µm i una massa de l'ordre d'1 ng, tot i que poden ser molt més grans.
Part de | estructura multicel·lular, grup de cèl·lules i teixit |
---|---|
Identificadors | |
MeSH | D002477 |
TH | H1.00.01.0.00001 |
FMA | 686465 : multiaxial – jeràrquic |
Recursos externs | |
Gray | p.35 |
EB Online | science/cell-biology |
Terminologia anatòmica |
La teoria cel·lular, proposada el 1838 per a les plantes i el 1839 per als animals, planteja que tots els organismes es componen de cèl·lules, que aquestes són la unitat bàsica de tot organisme i que totes les cèl·lules es formen a partir d'altres cèl·lules. Així doncs, totes les funcions vitals emanen de la maquinària cel·lular i les interaccions entre cèl·lules. A més a més, la conservació de la informació genètica en l'àcid desoxiribonucleic (ADN) fa que es pugui transmetre de generació en generació.
L'aparició del primer ésser viu a la Terra se sol associar al naixement de la primera cèl·lula. Encara que hi ha moltes hipòtesis sobre aquest fet, generalment es creu que el procés fou encetat per la transformació de molècules inorgàniques en orgàniques en condicions ambientals propícies. Seguidament, aquestes biomolècules s'haurien combinat i haurien creat entitats complexes capaces de replicar-se. Els fòssils d'estructures cel·lulars més antics s'han trobat en roques de la formació de Strelley Pool (Austràlia Occidental) i daten de fa 3.400 milions d'anys. Les dades suggereixen que aquestes cèl·lules tenien un metabolisme anaeròbic basat en el sofre.[1]
La història de la biologia cel·lular ha estat lligada al progrés tecnològic que en permetés l'estudi. Així doncs, les primeres observacions de la seva morfologia començaren amb la popularització dels microscopis rudimentaris de lents compostes al segle xvii, foren suplementades amb diverses tècniques histològiques per microscòpia òptica als segles XIX i xx, i assoleix un nivell de resolució superior mitjançant els estudis de microscòpia electrònica, de fluorescencia, i confocal, entre d'altres, ja al segle xx. El desenvolupament d'eines moleculars basades en la manipulació d'àcids nucleics i enzims permeteren una anàlisi més exhaustiva al llarg del segle xx.[2]
Les primeres aproximacions a l'estudi de la cèl·lula tingueren lloc al segle xvii;[3] després de l'aparició a finals del segle xvi dels primers microscopis.[4] Aquests instruments permeteren efectuar nombroses observacions que, en a penes dos-cents anys, portaren a un coneixement morfològic relativament acceptable. Aquesta és una breu cronologia d'aquests descobriments:
El concepte de cèl·lula com a unitat anatòmica i funcional dels organismes sorgí entre els anys 1830 i 1880, tot i que fou al segle xvii quan Robert Hooke en descrigué per primer cop l'existència, en observar en una preparació vegetal la presència d'una estructura organitzada que derivava de l'arquitectura de les parets cel·lulars vegetals. El 1830 ja es disposava de microscopis amb una òptica més avançada, cosa que permeté a investigadors com Theodor Schwann i Mattias Schleiden definir els postulats de la teoria cel·lular, que, entre altres coses, afirma:
Es pot definir la cèl·lula com la unitat morfològica i funcional de tot ésser viu. De fet, la cèl·lula és l'element més petit que es pot considerar viu. Com a tal, té una membrana de fosfolípids amb permeabilitat selectiva que manté un medi intern altament ordenat i diferenciat del medi extern en la seva composició, que es troba sota un control homeostàtic, que consisteix en biomolècules i alguns metalls i electròlits. L'estructura s'automanté de manera activa mitjançant el metabolisme, assegurant-se la coordinació de tots els elements cel·lulars i la seva perpetuació per replicació a través d'un genoma codificat per àcids nucleics. La part de la biologia que s'ocupa de les cèl·lules és la citologia.
Els biòlegs utilitzen diversos instruments per estudiar les cèl·lules. Obtenen informació de les seves formes, mides i components, que els serveix per comprendre també les funcions que hi tenen lloc. Des de les primeres observacions de cèl·lules, fa més de tres segles, fins a l'època actual, les tècniques i els aparells s'han anat perfeccionant, originant un nou camp de la biologia: la microscòpia. Tenint en compte la petitesa de la gran majoria de les cèl·lules, l'ús del microscopi és d'enorme valor en la investigació biològica. En l'actualitat, els biòlegs utilitzen dos tipus bàsics de microscopi: els òptics i els electrònics.
Les cèl·lules, com a sistemes termodinàmics complexos, tenen una sèrie d'elements estructurals i funcionals comuns que en possibiliten la supervivència; tanmateix, els diferents tipus de cèl·lula presenten modificacions d'aquestes característiques comunes que en permeten l'especialització funcional i, així doncs, un guany en complexitat.[9] D'aquesta manera, les cèl·lules romanen altament organitzades a expenses d'incrementar l'entropia del seu entorn, un dels requisits de la vida.[10]
Les cèl·lules vives són un complex sistema bioquímic. Les característiques que permeten distingir les cèl·lules dels sistemes químics no vivents són:
Les propietats cel·lulars no tenen per què ser constants al llarg del desenvolupament d'un organisme; evidentment, el patró d'expressió dels gens varia en resposta a estímuls externs, a més de factors endògens.[12] Un aspecte important és la pluripotencialitat, característica d'algunes cèl·lules que els permet dirigir el seu desenvolupament vers una varietat de possibles tipus de cèl·lula. En els metazous, la genètica subjacent a la determinació del destí d'una cèl·lula consisteix en l'expressió de determinats factors de transcripció específics del llinatge cel·lular al qual pertanyerà, així com a modificacions epigenètiques. A més, la introducció d'un altre tipus de factors de transcripció mitjançant enginyeria genètica en cèl·lules somàtiques és suficient per induir aquesta pluripotencialitat, de manera que aquest és un dels seus fonaments moleculars.[13]
La mida i la forma de les cèl·lules depèn dels seus elements més perifèrics (per exemple, la paret, si n'hi ha) i de la seva carcassa interna (és a dir, el citoesquelet). A més, la competència per l'espai tissular provoca una morfologia característica; per exemple, les cèl·lules vegetals, polièdriques in vivo, tendeixen a ser esfèriques in vitro.[14] Fins i tot poden existir paràmetres químics senzills, com els gradients de concentració d'una sal, que determinin l'aparició d'una forma complexa.[15]
Quant a la mida, la majoria de les cèl·lules són microscòpiques, és a dir, no són observables a simple vista. Tot i ser molt petites (un mil·límetre cúbic de sang pot contenir uns cinc milions de cèl·lules),[9] la mida de les cèl·lules és extremament variable. La cèl·lula més petita observada, en condicions normals, és la de Mycoplasma genitalium, de 0,2 μm, situada a prop del límit teòric de 0,17 μm.[16] Existeixen bacteris d'1 o 2 μm de longitud. Les cèl·lules humanes són molt variables: hematies de 7 micres, hepatòcits de 20 micres, espermatozous de 53 μm, òvuls de 150 μm i, fins i tot, algunes neurones de fins a un metre. En les cèl·lules vegetals, els grans de pol·len poden arribar a mesurar entre 200 i 300 μm, i alguns ous d'ocells poden arribar a mesurar entre 1 (guatlla) i 13 cm (estruç) de diàmetre. Per la viabilitat de la cèl·lula i el seu funcionament correcte, sempre cal tenir en compte la relació superfície-volum.[10] Pot augmentar considerablement el volum de la cèl·lula sense que augmenti la superfície d'intercanvi de la membrana, cosa que dificultaria el nivell i la regulació dels intercanvis de substàncies vitals per la cèl·lula. A través d'un mecanisme d'osmosi, la cèl·lula pot fer créixer el seu volum exponencialment. Aquest fet es dona quan el medi extern és hipertònic en comparació amb el medi intern de la cèl·lula, i si la diferència és molt gran, la cèl·lula pot anar creixent fins a morir per una turgència excessiva. Tanmateix, aquest fet no es produeix en les cèl·lules vegetals gràcies a les parets cel·lulars, que en limiten la mida.
Quant a la forma, les cèl·lules presenten una gran variabilitat i, fins i tot, algunes no tenen una forma ben definida o permanent. Poden ser: fusiformes (en forma de fus), estelades, prismàtiques, aplanades, el·líptiques, globoses o arrodonides, etc. Algunes tenen una paret rígida i altres no, cosa que els permet deformar la membrana i emetre prolongacions citoplasmàtiques (pseudopodis) per desplaçar-se o aconseguir aliment. Hi ha cèl·lules lliures que no presenten aquestes estructures de desplaçament però que tenen cilis o flagels, que són estructures derivades d'un orgànul cel·lular (el centrosoma) que doten aquestes cèl·lules de moviment.[17] Així doncs, existeixen múltiples tipus de cèl·lula, relacionats amb la funció que duen a terme; per exemple:
Les cèl·lules procariotes són petites i menys complexes que les eucariotes. Contenen ribosomes però manquen de sistemes d'endomembranes (és a dir, orgànuls delimitats per membranes biològiques, com ara el nucli cel·lular). Per això, el seu material genètic es troba dispers pel citosol. Tanmateix, hi ha excepcions: alguns bacteris fotosintètics tenen sistemes endomembranosos.[18] També dins del fílum dels planctomicets existeixen organismes com ara Pirellula que envolten el seu material genètic amb una membrana intracitoplasmàtica, o com ara Gemmata obscuriglobus, que l'envolten amb una doble membrana. Aquesta última també té altres compartiments de membrana interns, possiblement connectats amb la membrana externa del nucleoide i amb la membrana nuclear, que no té peptidoglicà.[19][20][21]
En general, es podria dir que els procariotes manquen de citoesquelet. Tanmateix, s'ha observat que alguns bacteris, com ara Bacillus subtilis, tenen proteïnes com ara MreB i mbl que actuen de manera similar a l'actina i són importants en la morfologia cel·lular.[22] Fusinita van den Ent, a Nature, va més enllà, afirmant que els citoesquelets d'actina i tubulina tenen un origen procariòtic.[23]
Els procariotes formen un grup de gran diversitat, i tenen un metabolisme extraordinàriament complex, en alguns casos exclusiu de certs tàxons, com alguns grups de bacteris, cosa que influeix en la seva versatilitat ecològica.[7] Els procariotes es classifiquen, segons Carl Woese, en arqueus i bacteris.[24]
Els arqueus tenen un diàmetre cel·lular comprès entre 0,1 i 15 μm, tot i que les formes filamentoses poden ser més grans per agregació de cèl·lules. Presenten múltiples formes diferents; fins i tot se n'ha descrit de quadrades i planes.[25] Alguns arqueus tenen flagels i són mòbils.
Els arqueus, igual que els bacteris, manquen de membranes internes que delimitin els orgànuls. Com tots els organismes, presenten ribosomes, però a diferència dels que es troben en els bacteris, que són sensibles a certs agents antimicrobians, els dels arqueus, més propers als eucariotes, no ho són. La membrana cel·lular té una estructura similar a la de la resta de cèl·lules, però la seva composició química és única, amb enllaços de tipus èter als lípids.[26] Gairebé tots els arqueus tenen una paret cel·lular (alguns Thermoplasma en són l'excepció) de composició característica; per exemple, no contenen peptidoglicà (mureïna), propi dels bacteris. Tanmateix, se'ls pot classificar per mitjà de la tinció de Gram, de vital importància en la taxonomia dels bacteris; en els arqueus, que tenen una estructura de paret ben diferent de l'eubacteriana, aquesta tinció es pot aplicar però manca de valor taxonòmica. L'ordre dels metanobacterials té una capa de pseudomureïna, que fa que aquests arqueus donin un resultat positiu a la tinció de Gram.[27][28] [29]
Com en gairebé tots els procariotes, les cèl·lules dels arqueus manquen de nucli, i presenten un únic cromosoma circular. Existeixen elements extracromosòmics, com ara plasmidis. El seu genoma és petit, d'entre dos i quatre milions de parells de bases. També és característica la presència d'ARN polimerases de constitució complexa i un gran nombre de nucleòtids modificats als àcids ribonucleics ribosòmics. D'altra banda, el seu ADN s'empaqueta en forma de nucleosomes, com en els eucariotes, gràcies a proteïnes semblants a les histones, i alguns gens tenen introns.[30] Poden reproduir-se per fissió binària o múltiple, fragmentació o gemmació.
Els bacteris són organismes relativament senzills, de mida molt reduïda, a penes d'unes micres en la majoria de casos. Com altres procariotes, manquen d'un nucli delimitat per una membrana, tot i que presenten un nucleoide, una estructura elemental que conté una gran molècula habitualment circular d'ADN.[31][11] Manquen de nucli cel·lular i d'altres orgànuls delimitats per membranes biològiques.[32] Al citoplasma s'hi poden observar plasmidis, petites molècules circulars d'ADN que coexisteixen amb el nucleoide i que contenen gens; són utilitzades sovint pels bacteris en la parasexualitat (reproducció sexual bacteriana). El citoplasma també conté ribosomes i diversos tipus de grànuls. En alguns casos, hi pot haver estructures compostes de membranes, habitualment relacionades amb la fotosíntesi.[3]
Posseeixen una membrana cel·lular composta de lípids, en forma de bicapa i sobre la qual es troba una coberta en què existeix un polisacàrid complex denominat peptidoglicà; depenent de la seva estructura i, per consegüent, la seva reacció a la tinció de Gram, es classifiquen els bacteris en grampositius i gramnegatius. L'espai comprès entre la membrana cel·lular i la paret cel·lular (o la membrana exterior, si existeix) es denomina espai periplasmàtic. Alguns bacteris tenen una càpsula. Altres són capaces de generar endòspores (estadis latents capaços de resistir a condicions extremes) en algun moment del seu cicle vital. Entre les formacions exteriors pròpies de la cèl·lula bacteriana destaquen els flagels (d'estructura completament diferent de la dels flagels eucariotes) i els pili (estructures d'adherència i relacionats amb la parasexualitat).[3]
La majoria dels bacteris disposen d'un únic cromosoma circular i solen posseir elements genètics addicionals, amb diferents tipus de plasmidis. La seva reproducció, binària i molt eficient en el temps, permet la ràpida expansió de les poblacions, generant un gran nombre de cèl·lules que són pràcticament clons, és a dir, idèntiques entre si.[30]
Les cèl·lules eucariotes són l'exponent de la complexitat cel·lular actual.[9] Presenten una estructura bàsica relativament estable caracteritzada per la presència de diferents tipus d'orgànuls intracitoplasmàtics especialitzats, entre els quals destaca el nucli, que alberga el material genètic. Especialment en els organismes pluricel·lulars, les cèl·lules poden assolir un alt grau d'especialització. Aquesta especialització o diferenciació és tal que, en alguns casos, compromet la viabilitat del tipus cel·lular aïllat. Així, per exemple, la supervivència de les neurones depèn de les cèl·lules glials.[7] D'altra banda, l'estructura de la cèl·lula varia segons la situació taxonòmica de l'ésser viu; així doncs, les cèl·lules vegetals difereixen de les animals, així com de les dels fongs. Per exemple, les cèl·lules animals manquen de paret cel·lular, són molt variables, no tenen plastidi, poden tenir vacúols però no són molt grans, i presenten centríols (que són agregats de microtúbuls cilíndrics que contribueixen a la formació dels cilis i els flagels i faciliten la divisió cel·lular). Les cèl·lules dels vegetals, en canvi, presenten una paret cel·lular (en comptes d'una matriu extracel·lular) composta principalment de cel·lulosa, disposen de plastidis com ara cloroplasts (orgànuls capaços de dur a terme la fotosíntesi), cromoplasts (orgànuls que acumulen pigments) o leucoplasts (orgànuls que acumulen el midó fabricat en la fotosíntesi), tenen vacúols de gran mida que acumulen substàncies de reserva o de refús produïdes per la cèl·lula, i finalment també tenen plasmodesmes, que són connexions citoplasmàtiques que permeten la circulació directa de les substàncies del citoplasma d'una cèl·lula a l'altra, amb continuïtat de les membranes plasmàtiques.[33]
Les cèl·lules són entitats dinàmiques, amb un metabolisme intern de gran activitat l'estructura del qual és un flux entre rutes anastomosades. Un fenomen observat en tots els tipus de cèl·lula és la compartimentalització, que consisteix en una heterogeneïtat que dona peu a ambients més o menys definits (envoltats o no de membranes biològiques) en els quals existeix un microambient que aglutina els elements implicats en una ruta biològica.[34] Aquesta compartimentalitzacó assoleix el seu màxim exponent en les cèl·lules eucariotes, que estan formades per diferents estructures i orgànuls que duen a terme funcions específiques, cosa que suposa un mètode d'especialització en l'espai i en el temps.[17] Tanmateix, cèl·lules més senzilles, com les dels procariotes, ja presenten especialitzacions similars.[35]
La composició de la membrana plasmàtica varia entre cèl·lules depenent de la seva funció o del teixit en què es trobi, però té elements comuns. Es compon d'una capa doble de fosfolípids, de proteïnes unides amb un enllaç no covalent a aquesta bicapa, i de glúcids units amb un enllaç covalent a lípids o proteïnes. En general, les molècules més nombroses són les dels lípids; tanmateix, les proteïnes, a causa de la seva massa molecular superior, representen aproximadament el 50% de la massa de la membrana.[34]
Un model que explica el funcionament de la membrana plasmàtica és el model de mosaic fluid de Singer i Nicolson (1972), que desenvolupa un concepte d'unitat termodinàmica basat en les interaccions hidròfobes entre molècules i un altre tipus d'enllaços no covalents.[36]
Aquesta estructura de membrana sosté un complex mecanisme de transport, que permet un fluid intercanvi de massa i energia entre l'ambient intracel·lular i l'exterior.[34] A més, la possibilitat de transport i interacció entre molècules adjacents o d'una cèl·lula amb el seu entorn els permet comunicar-se químicament, és a dir, permet la senyalització cel·lular. Els neurotransmissors, les hormones, i els mediadors químics locals afecten cèl·lules concretes, modificant-ne el patró d'expressió gènica mitjançant mecanismes de transducció de senyals.[37]
A sobre la bicapa lipídica, independentment de la presència o no d'una paret cel·lular, existeix una matriu que pot variar, de poc conspícua, com en els epitelis, a molt extensa, com en el teixit conjuntiu. Aquesta matriu, denominada glicocàlix, rica en líquid tissular, glucoproteïnes, proteoglicans i fibres, també intervé en la generació d'estructures i funcions emergents, derivades de les interaccions entre cèl·lules.[7]
Les cèl·lules eucariotes tenen el seu material genètic en (generalment) un únic nucli cel·lular, delimitat per un embolcall que consisteix en dues bicapes lipídiques travessades per nombrosos porus nuclears i en continuïtat amb el reticle endoplasmàtic. Al seu interior es troba el material genètic, l'ADN, observable, en les cèl·lules en interfase, com a cromatina de distribució heterogènia. A aquesta cromatina s'associen múltiples proteïnes, entre les quals destaquen les histones i l'ARN, un altre àcid nucleic.[38]
Aquest material genètic es troba immers en una activitat contínua de regulació de l'expressió gènica; les ARN polimerases transcriuen ARN missatger contínuament, que, exportat al citosol, és traduït a proteïna segons les necessitats fisiològiques. A més, depenent del moment del cicle cel·lular, aquest ADN pot entrar en replicació com a pas previ a la mitosi.[30] Tanmateix, les cèl·lules eucariotes tenen material genètic extranuclear; concretament, en mitocondris i plastidis, si n'hi ha; aquests orgànuls conserven una independència genètica parcial del genoma nuclear.[39][40]
Dins del citosol, és a dir, la matriu aquosa que alberga els orgànuls i altres estructures cel·lulars, es troben immersos múltiples tipus de maquinària de metabolisme cel·lular: orgànuls, inclusions, elements del citoesquelet, enzims, etc. De fet, aquests últims representen el 20% dels enzims totals de la cèl·lula.[7]
El metabolisme cel·lular es basa en la transformació d'unes substàncies químiques, denominades metabòlits, en altres; aquestes reaccions químiques són catalitzades per enzims. Tot i que gran part del metabolisme té lloc al citosol, com la glucòlisi, existeixen processos específics d'orgànuls.[37]
Les cèl·lules posseïxen un esquelet que els permet mantenir la forma i l'estructura, però, encara més important, aquest esquelet és un sistema dinàmic que interacciona amb la resta de components cel·lulars, generant un alt grau d'ordre intern. Aquest esquelet està format per una sèrie de proteïnes que s'agrupen produint estructures filamentoses que, mitjançant altres proteïnes, interaccionen entre elles, creant una espècie de reticle. Aquest esquelet rep el nom de citoesquelet, i els seus elements principals són: els microtúbuls, els microfilaments i els filaments intermedis.[17][48][49][50]
El cicle cel·lular és el procés ordenat i repetitiu en el temps i en el qual una cèl·lula mare creix i es divideix en dues cèl·lules filles. Les cèl·lules que no s'estan dividint es troben en una fase coneguda com a G0, paral·lela al cicle. La regulació del cicle és essencial pel correcte funcionament de les cèl·lules sanes i està clarament estructurat en fases:[42]
A diferència del que passa en la mitosi, en què es manté la dotació genètica, existeix una variant de la divisió cel·lular, pròpia de les cèl·lules de la línia germinal, denominada meiosi. Redueix la dotació genètica diploide, comuna a totes les cèl·lules somàtiques de l'organisme, a una haploide, és a dir, amb una única còpia del genoma. D'aquesta manera, la fusió, mitjançant la fecundació, de dos gàmetes haploides provinents de dos parentals diferents dona com a resultat un zigot, un nou individu diploide, equivalent en dotació genètica als seus pares.[56]
La incorrecta regulació del cicle cel·lular pot provocar l'aparició de cèl·lules precancerígenes que, si no són induïdes al suïcidi mitjançant l'apoptosi, poden causar l'aparició de càncer. Els errors que porten a aquesta desregulació estan relacionats amb la genètica cel·lular; el més habitual són les alteracions en oncogens, gens supressors de tumors i gens de reparació de l'ADN.[57]
L'aparició de la vida, i per consegüent, de la cèl·lula, s'inicia probablement gràcies a la transformació de molècules inorgàniques en orgàniques sota unes condicions ambientals adients, i posteriorment començà la interacció d'aquestes biomolècules, generant entitats de complexitat superior. L'experiment de Miller i Urey, realitzat el 1953, demostrà que una mescla de composts orgànics senzills es pot transformar en alguns aminoàcids, glúcids i lípids (tots ells components de la matèria viva) sota unes condicions ambientals que simulaven les hipotèticament presents en la Terra primerenca (vers l'eó Arqueà).[58]
Es postula que aquests components orgànics s'agruparen generant estructures complexes, els coacervats d'Oparin, encara acel·lulars que, quan assoliren la capacitat d'autoorganitzar-se i perpetuar-se, formaren un tipus de cèl·lula primitiva, el progenot de Carl Woese, precursor dels tipus actuals de cèl·lula.[24] Una vegada s'havia diversificat aquest grup cel·lular, pogueren aparèixer nous tipus de cèl·lula, més complexos, per endosimbiosi, és a dir, captació permanent d'uns tipus cel·lulars dins d'altres sense que hi hagi una pèrdua total d'autonomia dels tipus capturats.[59] D'aquesta manera, alguns autors descriuen un model en què la primera cèl·lula sorgí amb la introducció d'un arqueu dins un bacteri, formant un primitiu nucli cel·lular.[60] Tanmateix, la impossibilitat que un bacteri pugui dur a terme una fagocitosi i, per tant, captar un altre tipus de cèl·lula, obrí la porta a una altra hipòtesi, que suggereix que fou una cèl·lula denominada cronòcit la que fagocità un bacteri i un arqueu, formant el primer organisme eucariota. D'aquesta manera, i mitjançant una anàlisi de seqüències a nivell genòmic d'organismes model eucariotes, s'ha aconseguit descriure aquest cronòcit original com un organisme amb citoesquelet i membrana plasmàtica, cosa que pot explicar, si l'arqueu fagocitat ho tenia a l'ADN, la separació d'espai en els eucariotes actuals entre la transcripció (nuclear) i la traducció (citoplasmàtica).[61]
Una dificultat addicional és el fet que no s'han trobat organismes eucariotes primitivament amitocondriats com ho exigeix la hipòtesi de l'endosimbiosi. A més, l'equip de María Rivera, de la Universitat de Califòrnia, comparant genomes complets de tots els dominis de la vida, ha trobat proves que els eucariotes contenen dos genomes diferents, un més similar als bacteris i l'altre als arqueus, mostrant en aquest últim cas semblances amb els metanògens, en particular en el cas de les histones.[62][63] Això portà Bill Martin i Miklós Müller a plantejar la hipòtesi que la cèl·lula eucariota no hagués sorgit per endosimbiosi, sinó per una fusió quimèrica i acoblament metabòlic d'un metanogen i un α-proteobacteri simbionts a través de l'hidrogen (hipòtesi de l'hidrogen).[64] Aquesta hipòtesi atreu actualment posicions molt oposades, amb detractors com ara Christian de Duve.[65]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.