From Wikipedia, the free encyclopedia
En matemàtiques es diu que una funció és injectiva quan cada imatge de la funció (cada element del conjunt recorregut) es correspon a una antiimatge diferent del conjunt de sortida (el domini).[1] És a dir, quan no existeix cap imatge que tingui associada més d'una antiimatge del domini. De forma gràfica, en el cas de funcions reals d'una sola variable, s'acostuma a dir que una funció és injectiva quan la seva gràfica no es talla en més d'un punt per qualsevol recta paral·lela a l'eix X.[2][3]
Aquelles funcions injectives que també són suprajectives s'anomenen bijeccions.[4][5]
Sigui f : X → Y una aplicació, es diu que f és injectiva si i només si per a qualsevol , si aleshores o, cosa que és el mateix, si el fet que implica que necessàriament .
També es poden definir les funcions injectives com aquelles funcions per a les quals es poden desfer els canvis que provoquen. Així doncs, si f : X → Y és una aplicació injectiva aleshores existeix una altra funció g : Y → X tal que per a tot valor x del conjunt X, és a dir que la funció composició g∘f és igual a la funció identitat del conjunt X.
Tingueu en compte que aquesta funció g pot no ser la funció inversa completa de f, perquè la composició en el sentit contrari f∘g pot no ser la identitat de Y.
En realitat però, convertir una funció f : X → Y injectiva en una de bijectiva i per tant invertible és tan senzill com substituir el seu conjunt d'arribada Y pel seu vertader recorregut I=f(X). És a dir, sigui fb: X → I tal que per a tot x del domini X es compleixi que fb(x)=f(x), tindrem que la funció fb és bijectiva.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.