From Wikipedia, the free encyclopedia
Mrežnjača (latinski: retina) je unutrašnja ovojnica oka. Smještena je na stražnjem dijelu očne jabučice i njen je najvažniji dio. Sadrži vidne ćelije, štapiće i čunjiće/čepiće koji pomažu u prepoznavanju svjetla i raspoznavanju boja. Povezane su sa živčanim vlaknima koja se udružuju u vidni nerv.[1][2][3][4]
Fiziologija mrežnjače ispoljava veliku raznolikost u životinjskom carstvu, što se objašnjava različitim funkcijama koje mora obaviti. Ali se odavno zna da sve varijante slijede slične modele organizacije. Obično se, međutim, opisuje oko primata, najčešće ljudsko.
Mrežnjača se sastoji od naslaganih slojeva u radijalnom pravcu (od površine mrežnjače na stražnjem dijelu oka):
Mrežnjača je, s druge strane, ima dvostruku arhitektonsku organizaciju: kružnu i i tangentnu.
U zavisnosti od intenziteta svjetlosti, bit će angažirane tri djelomično različite, kako bi se osigurao prijenos fotona svjetla na receptore, a prijenos akcijskih potencijala sa ganglijskih ćelija.
receptora, a prijenos akcionih potencijala od strane ganglijskih ćelija.
čepići → bipolne ćelije ON/OFF → Ganglijske ćelije ON/OFF.
Na hiperpolarizirani čepić i štapić glutamat u manjim količinama. To dovodi do postupnog aktiviranja ćelije u ON bipolnom centru i dipolne inaktivacije bipolarnih ćelija u OFF centru. Ovi suprotno bipolarni odgovori se objašnjavaju činjenicom da su oni ispoljavaju na njihovoj površini raznih glutamat receptora (GLU): bipolni ON imaju metabotropne receptore Glu u kombinaciji sa G proteinom (mGluR6 ); OFF bipolne ćelije ispoljavaju ionotropne receptore (AMPA, kainatne). Recptori mGluR6 zatvorili Na+ kanali na taj način hiperpolariziraju ćelije. Ali, ovdje smanjenje glutamata izaziva suprotnu dipolnu aktivaciju.
Drugim riječima, centralni čunjići su u stanju mirovanja, a bipolni i ganglijski čunjići stimuliraju periferne štapiće preko amakrinih ćelijaː → čepići (1) C. bipolarni ON → štapići (2) C. sve amakrine → (3) c akson. → bipolni čepić (4) C. ganglijski ON/OFF.
Štapići se sastoji 4 sinapsne veze sa dvije jakde konvergencijske poente: 20 do 50 štapića konvergiraju na svakoj bipolnoj ćelija štapića (CBB) i od 20 do 25 CBB približava svakoj amakrinoj ćeliji AII. Sve u svemu, signale od najmanje hiljadu štapića konvergiraju u jednu ćeliju gangliona.[6]. Osim toga, štapići mogu odgovoriti na stimulaciju jednog fotona, a potrebno je najmanje stotinu da bi se dobio odgovor iz čepića. Ova organizacija značajno povećava amplitude signala i osigurava dobru osjetljivost pri slabom osvjetljenju.
Retino-tektni sistem relej: gornji kolikulus bez projekcija na korteks |
Genikulo-prugasti sistem releji: bočno koljenasto tijelo sa projekcijom na primarni vidni korteks (prugasti korteks i V1) |
Periferna mrežnjača | Centralna mrežnjača |
---|---|
Aktivacija štapića | Aktivacija čepića (čunjića) |
Odnosi konvergencije | Odnosi pojedinačne aktivnosti |
Ganglijski tip M (magaćelijski: veliko, široko polje prijema, fazna adaptacija) | P-tip ganglija (parvoćelijski: mala veličina, malo polje prijema, tonirana adaptacija). |
Visoka osjetljivost | Niska osjetljivost |
Mala snaga diskriminacije | Visoka oštrina vida |
Obrađuje informacije o pokretima | Obrađuje informacije koje se odnose na oblik i boju |
Uloga: Otkrivanje informacija | Uloga: Potvrđivanje informacija |
Za razliku, od fotografske kamere, mrežnjača nešalje sliku jednostavno u mozak. Ona je prostorno kodira, kako bi stala u ograničeni kapacitet vidnog nerva. Kompresija je potrebna zato što postoji 100 puta više fotoreceptorskih od ganglijskih ćelija i što uklanja korelaciju dolaznih slika. Kao štio je gore naglašeno, postoje dvije vrste centara koje okružuju strukture u mrežnjači: ON i OFF centri. ON centri imaju pozitivno podraženi centar i negativno podraženu okolinu, dok su OFF centri suprotno usmjereni. Pozitivno se podraživanje zove ‘’’ekscitacija, a negativno: ‘’inhibicija. Ovi centri nisu fizički da bi se mogli vidjeti bojenjem uzoraka tkiva ili ispitivanjem anatomije. Oni su centri logičke strukture (tj. matematički sažetak) u tom smislu da ovise o jačini veze između bipolnih i ganglijskih stanica. Smatra se da je snaga veze između ćelija uvjetovana brojem i vrstom ionskih kanala ugrađenih u sinapse između ganglijskih i bipolnih ćelija.[7][8][9]
Periferne strukture su matematički ekvivalent algoritama rubne detekcije koje koriste računarni programeri kako bi izdvojili ili pojačali rubove na digitalnoj fotografiji. Tako I mrežnjača poboljšava detekcijeu rubova objekata unutar svog vidnog polja. Primjerice, na slici psa, mačke i kuće, rubovi tih objekata sadrže najviše informacija. Za više funkcije mozga (ili računara) izdvajanje i klasificiranje tih posmatranih predmeta, neophodno je da mrežnjača najprije diferencira različite objekate ukupnog prizora.
Kao primjer može se uzeti da matrica je u srcu računarskog algoritma koji implementira rubnu detekciju. Ona je ekvivalent strukturi koja okružuje centar. U ovom primjeru, svaki element unutar matrice bi bio povezan s jednim fotoreceptorom, a u središtu je receptor koji se trenutno obrađuje. Središnji fotoreceptor je pomnožen s +1 faktorom težine. Okolni fotoreceptori su "najbliži susjedi" centru i pomnoženi su s -1 / 8 vrijednosti. Od tih elemenata, izračuna se konačni zbir od devet. Sumacija se ponavlja za svaki fotoreceptor u slici, premještanjem u lijevo do kraja reda, a zatim prema dolje na slijedeći red. Kada su svi ulazi od devet fotoreceptora iste vrijednosti, ukupni zbroj ove matrice je nula. Rezultat nula ukazuje da je slika ujednačena (tj. ne mijenja se) unutar tog malog dijela. Negativni ili pozitivni zbirovi znače da se nešto mijenjalo unutar tog malog dijela od devet fotoreceptora.[10]
-1/8 | -1/8 | -1/8 |
-1/8 | +1 | -1/8 |
-1/8 | -1/8 | -1/8 |
Takva matrica je samo približna slika onoga što se stvarno događa unutar mrežnjače.
Slijedi primjer unosa slike i načina modificiranja rubnom detekcijom.
Nakon prostornog šifrirana slike u perifernim strukturama, signal se šalje iz optičkog nerva (preko aksona ganglijskih stanica) putem hijazme glavnog vidnog nerva do lateralnih genikulatnih jezgri (LGN). Tačna funkcija LGN još nije poznata. Signal iz LGN tada putuje do primarne vidne kore (V1 korteks).
Pojednostavljeni put signala: fotoreceptori → bipolarne stanice→ ganglija→ hijazma → LGN→ V1 korteks (kora velikog mozga).
Na građu I funkciju mrežnjače mogu uticati mnoge nasljedne i stečene bolesti ili poremećaji. Neki od njih su slijedeće.
Raspoloživo je mnogo različitih instrumenata za dijagnosticiranje bolesti i poremećaja koji utiču na mrežnicu. Za pregled e se standardno koristi oftalmoskop. Odnedavno se koristi I adaptivna optika za prikaz pojedinih štapića i čunjića ‘’in vivo. Firma koja je utemeljena u Škotskoj razvila je tehnologiju koja omogućuje liječnicima promatranje cijele mrenjače bez neprijatnosti za pacijenta.
Za indirektno mjerenje električne aktivnosti mrežnice koristi se elektroretinogram, na koji utiču pojedine bolesti. Relativno nova tehnologija, koja postaje široko dostupna, je optički koherentna tomografija. Ta neinvazivna tehnika omogućava dobivanje 3D volumetrijskog ili tomograma poprečnog presjeka visoke rezolucije – za prikaz fine strukture histoloških mrežnjače. Liječenje ovisi o vrsti bolest i/ili prirodi poremećaja. Pokušana je i transplantacija mrežnjače, ali bez puno uspjeha. Na MIT-u, Sveučilištu Južne Kalifornije i Sveučilištu Novog Južnog Walesa, u razvoju je izrada umjetne mrežnjače: stvara se takav implantat koji će zaobići fotoreceptore mrežnjače i direktno stimulirati nervne ćelije signalima iz digitalnog fotoaparata.
OCT sken mrežnice na 800 nm sa aksijalnom rezolucijom od 3 µm
Mrežnjača je bogato isprepletena krvnim sudovima. Njihov raspored je krajnje specifičan i obilježavajući za svaku osobu. Ta jedinstvena struktura i krvnih sudova u koristi se za biometrijsku identifikaciju.
George Wald, Haldan Keffer Hartline i Ragnar Granit dobili su 1967. Nobelovu nagradu za fiziologiju ili medicinu za istraživanje mrežnjače.
U nedavnoj studiji na Univerzitetu Pensilvanije izračunata je približna propusnost ljudske mrežnječe od 8,75 megabita u sekundi, dok ona kod zamorca prenosi 875 kilobita.
Na Univerzitetu i Očnoj bolnici Moorfields u Londonu, 2006. pokazali su da fotoreceptorska ćelija može biti uspješno transplantirana uoko miša ako su donorske ćelije u kritičnoj fazi razvoja. Nedavno su Ader i suradnici u Dublinu, pomoću elektronskog mikroskopa, pokazali da transplantirani fotoreceptori formiraju sinapsne veze.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.