Loading AI tools
দক্ষিণ এশিয়ায় গণিতের বিকাশ উইকিপিডিয়া থেকে, বিনামূল্যে একটি বিশ্বকোষ
ভারতীয় গণিত তথা প্রাচীন ভারতে গণিত চর্চা সম্পর্কে বিশদভাবে কিছু জানা যায় না। তবে পৃথিবীর অন্যান্য অঞ্চলের তুলনায় গণিত চর্চায় ভারতবর্ষ যথেষ্ট অগ্রগামী ছিলো বলে ধারণা করা হয়। মিশর, ব্যাবিলন, মেসোপটেমিয়া, চীন প্রভৃতি দেশে প্রাচীনকাল থেকে গণিতের অনুশীলন থাকলেও প্রাচীন ভারতে এর চর্চার তথ্য পাওয়া যায়। ভারতীয় উপমহাদেশে ভারতীয় গণিতের আবির্ভাব ঘটে খ্রিস্টপূর্ব ১২০০ থেকে ১৮ শতকের শেষ পর্যন্ত।[1] ভারতীয় গণিতের শাস্ত্রীয় যুগে (৪০০ খ্রিস্টাব্দ থেকে ১২০০ খ্রিস্টাব্দ), আর্যভট্ট,ব্রহ্মগুপ্ত, দ্বিতীয় ভাস্কর এবং বরাহমিহির মত পণ্ডিতদের দ্বারা গুরুত্বপূর্ণ অবদান ছিল।[2] বর্তমানে ব্যবহৃত দশমিক সংখ্যা পদ্ধতি প্রথম ভারতীয় গণিতে ব্যবহার করা হয়েছিল।[3] ভারতীয় গণিতবিদগণ একটি সংখ্যা, ঋণাত্মক সংখ্যা, পাটিগণিত এবং বীজগণিত হিসাবে শূন্যের ধারণার গবেষণায় প্রাথমিক অবদান রেখেছিলেন।[4] উপরন্তু, ভারতে ত্রিকোণমিতি আরও উন্নত হয়েছিল, এবং বিশেষ করে, সাইন এবং কোসাইনের আধুনিক সংজ্ঞা সেখানে বিকশিত হয়েছিল। এই গাণিতিক ধারণাগুলি মধ্যপ্রাচ্য, চীন এবং ইউরোপে প্রেরণ করা হয়েছিল এবং আরও উন্নয়নের দিকে পরিচালিত করেছিল যা এখন গণিতের অনেক ক্ষেত্রের ভিত্তি তৈরি করেছে। প্রাচীন এবং মধ্যযুগীয় ভারতীয় গাণিতিক কাজগুলি, যা সবই সংস্কৃত ভাষায় রচিত, সাধারণত সূত্রের একটি অংশ নিয়ে গঠিত যেখানে একটি ছাত্রের মুখস্থ করতে সাহায্য করার জন্য শ্লোকের মধ্যে একটি বিধি বা সমস্যার একটি সেট মহান অর্থনীতির সাথে বলা হয়েছিল। এটি একটি গদ্য ভাষ্য (কখনও কখনও বিভিন্ন পণ্ডিতদের দ্বারা একাধিক ভাষ্য) সমন্বিত একটি দ্বিতীয় বিভাগ দ্বারা অনুসরণ করা হয়েছিল যা সমস্যাটিকে আরও বিশদভাবে ব্যাখ্যা করেছিল এবং সমাধানের জন্য ন্যায্যতা প্রদান করেছিল। গদ্য বিভাগে, ফর্ম (এবং তাই এটির মুখস্তকরণ) এতটা গুরুত্বপূর্ণ হিসাবে বিবেচিত হয়নি যতটা ধারণা জড়িত ছিল।[5] আনুমানিক খ্রিস্টপূর্ব ৫০০ অব্দ পর্যন্ত সমস্ত গাণিতিক কাজ মৌখিকভাবে প্রেরণ করা হয়েছিল; তারপরে, সেগুলি মৌখিকভাবে এবং পাণ্ডুলিপি আকারে উভয়ই প্রেরণ করা হয়েছিল। ভারতীয় উপমহাদেশে উৎপাদিত প্রাচীনতম বর্তমান গাণিতিক দলিল হল বার্চ বার্ক বাখশালী পাণ্ডুলিপি, ১৮৮১ সালে পেশোয়ার (আধুনিক পাকিস্তান) নিকটবর্তী বাখশালি গ্রামে আবিষ্কৃত হয়েছিল এবং সম্ভবত ৭ম শতাব্দী থেকে। [6][7] ভারতীয় গণিতের একটি পরবর্তী যুগান্তকারী ছিল খ্রিস্টীয় ১৫ শতকে কেরালা স্কুলের গণিতবিদদের দ্বারা ত্রিকোণমিতিক ফাংশনের (সাইন, কোসাইন এবং আর্ক ট্যানজেন্ট) জন্য সিরিজ সম্প্রসারণের বিকাশ। তাদের উল্লেখযোগ্য কাজ, ইউরোপে ক্যালকুলাস আবিষ্কারের দুই শতাব্দী আগে সম্পন্ন হয়েছিল, যা বর্তমানে পাওয়ার সিরিজের প্রথম উদাহরণ হিসেবে বিবেচিত হয় (জ্যামিতিক সিরিজ ছাড়াও)।[8] যাইহোক, তারা পার্থক্য এবং একীকরণের একটি পদ্ধতিগত তত্ত্ব প্রণয়ন করেনি, না তাদের ফলাফল কেরালার বাইরে প্রেরিত হওয়ার কোনো প্রত্যক্ষ প্রমাণ নেই।[9]
এই নিবন্ধটি ইংরেজি থেকে আনাড়িভাবে অনুবাদ করা হয়েছে। এটি কোনও কম্পিউটার কর্তৃক অথবা দ্বিভাষিক দক্ষতাহীন কোনো অনুবাদক কর্তৃক অনূদিত হয়ে থাকতে পারে। |
প্রাচীন সিন্ধু সভ্যতায় গণিতের হিসাব ছিলো ডেসিমাল পদ্ধতির।[10] তারা স্কেল ব্যবহারেও দক্ষতা অর্জন করেছিলো।
পৃথিবীর প্রাচীনতম গ্রন্থ বেদে স্তুপ ও যজ্ঞবেদী নির্মাণে, যন্ত্র-প্রতিকাদির রচনায় গণিতশাস্ত্রের বহুল প্রয়োগ দেখা যায়। খ্রীষ্টপূর্ব ৮০০ অব্দে হিন্দু শুল্ব সূত্রে পীথাগোরাসের উপপাদ্য নামে যা প্রচলিত , তারও প্রয়োগ দেখা যায়। মহাভারতে গণিত ও সংখ্যার প্রচুর উল্লেখ পাওয়া যায়। 'ললিত বিস্তার' গ্রন্থে উল্লিখিত আছে, ভগবান বুদ্ধ পাটীগণিতে দক্ষ ছিলেন। জ্যোতির্বিদ্যার প্রখ্যাত গ্রন্থ 'সূর্যসিদ্ধান্ত' আনুমানিক ৪০০ খ্রীষ্টাব্দের রচনা। সমসাময়িক গ্রন্থ 'পৌলিশ-সিদ্ধান্ত'এ প্রাচীন ভারতে ত্রিকোণমিতির সারাংশ লিপিবদ্ধ হয়েছে দেখা যায়। ব্রাহ্মী সংখ্যা ও ব্রাহ্মী লিপি, স্বাভাবিক সংখ্যার লিখন প্রণালীর প্রচলন, দশমিক সংখ্যার উদ্ভাবন ও শূণ্যের (০) প্রকাশনা ভারতীয় হিন্দু-গণিতজ্ঞদেরই আবিষ্কৃত।ভারতের আচার্যগণ বিরাট বিরাট সংখ্যার নামকরণ করেছেন, যেমন - প্রযুত, অর্বদ, নার্বুদ, সমুদ্র, মধ্য, অন্ত, পরার্ধ ইত্যাদি; যা অন্য কোনও দেশে নেই।
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.