Loading AI tools
ভরসম্পন্ন বস্তুর মধ্যকার আকর্ষণ বল উইকিপিডিয়া থেকে, বিনামূল্যে একটি বিশ্বকোষ
মহাকর্ষ একটি প্রাকৃতিক ঘটনা যা দ্বারা সকল বস্তু একে অপরকে আকর্ষণ করে। এটির সংজ্ঞা হিসেবে বলা যায় যে, যেকোনো ভরের বস্তুদ্বয় একে অপরকে যে বলে আকর্ষণ করে তা হলো মহাকর্ষ। যদি এই আকর্ষণ পৃথিবী এবং অন্য কোন বস্তুর মাঝে হয় তাহলে তাকে বলা হয় অভিকর্ষ। প্রকৃতির চারটি মৌলিক বলের একটি হলো মহাকর্ষ।[1] মহাকর্ষের কারণেই পৃথিবীসহ অন্যান্য গ্রহগুলি সূর্যের চারিদিকে ঘূর্ণায়মান থাকে। স্যার আইজাক নিউটন ১৬৮৭ খ্রিষ্টাব্দে তার ফিলোসফিয়া ন্যাচারালিস প্রিন্সিপিয়া ম্যাথামেটিকা গ্রন্থে এ বিষয়ে ধারণা প্রদান করেন৷
মহাকর্ষের বিশেষ উদাহরণ হলো মাধ্যাকর্ষণ বা অভিকর্ষ যার কারণে ভূপৃষ্ঠের উপরস্থ সকল বস্তু ভূকেন্দ্রের দিকে আকৃষ্ট হয়। মাধ্যাকর্ষণের প্রভাবেই উপরিস্থিত বা ঝুলন্ত বস্তু মুক্ত হলে ভূপৃষ্ঠে পতিত হয়। মাধ্যাকর্ষণের প্রভাবে ভরসম্পন্ন বস্তুসমূহে ওজন অনুভূত হয়। একটি বস্তুর ভর যত বেশি হয়, মাধ্যাকর্ষণের প্রভাবে তার ওজনও তত বেশি হয়।
বিজ্ঞানী নিউটন সর্বপ্রথম মহাকর্ষ বলের গাণিতিক ব্যাখ্যা প্রদান করেন। এটি নিউটনের মহাকর্ষ সূত্র নামে পরিচিত। আধুনিক পদার্থবিদ্যায় মহাকর্ষ সবচেয়ে সঠিকভাবে বর্ণনা করা হয় আইনস্টাইন প্রস্তাবিত আপেক্ষিকতার সাধারণ তত্ত্ব দ্বারা। আইনস্টাইনের মতে স্থান-কালের বক্রতার কারণেই মহাকর্ষ বল সৃষ্টি হয়।
[[[অতি প্রাচীনকাল থেকেই আকাশের গ্রহ-নক্ষত্র সম্পর্কে বিজ্ঞানীদের কৌতূহল ছিল। ডেনমার্কের বিশিষ্ট বিজ্ঞানী টাইকো ব্রাহে বহু বছর ধরে বিভিন্ন গ্রহের গতিবিধি পর্যবেক্ষণ করেন এবং তাদের গতি সংক্রান্ত নানা তথ্য সংগ্রহ করেন। পরবর্তীকালে ১৬০০ খ্রিষ্টাব্দে ওই তথ্যগুলির সহায়তায় এবং আরো অনেক পর্যবেক্ষণের পর ডেনমার্কের আরো একজন জ্যোতির্বিদ জোহানেস কেপলার এই সিদ্ধান্তে উপনীত হন যে, গ্রহগুলি কোনো এক বলের প্রভাবে সূর্যকে কেন্দ্র করে অবিরত ঘুরছে।]]]
স্যার আইজাক নিউটন ১৬৮৭ খ্রিষ্টাব্দে প্রকাশিত তার Philosophia Naturalis Principia Mathmatica বইটিতে মহাকর্ষ বিষয়ে ধারণা দেন ৷ তার সূত্রটি ছিল:
এই বিশ্বে যে-কোনো দুটি বস্তুকণা তাদের সংযোজক সরলরেখা বরাবর পরস্পরকে আকর্ষণ করে। এই আকর্ষণ বল কণাদুটির ভরের গুণফলের সমানুপাতিক এবং তাদের দূরত্বের বর্গের ব্যস্তানুপাতিক।
এ সূত্রানুসারে যদি দুটি বস্তুর ভর যথাক্রমে ও এবং মধ্যবর্তী দূরত্ব হয় তবে
মহাকর্ষীয় বল, এবং
সমানুপাতিক ধ্রুবক কে সার্বজনীন মহাকর্ষীয় ধ্রুবক বলে।
এই মহাকর্ষীয় ধ্রুবক, G এর মান = 6.673×10^-11 N m^2 kg^-2
কোন বস্তুর আশে পাশে যে অঞ্চলব্যাপী এর মহাকর্ষীয় প্রভাব বজায় থাকে, অর্থাৎ কোনো বস্তু রাখা হলে সেটি আকর্ষণ বল লাভ করে, তাকে মহাকর্ষীয় ক্ষেত্র বলে।
তাত্ত্বিকভাবে একটি বস্তুর মহাকর্ষীয় ক্ষেত্র অসীম পর্যন্ত বিস্তৃত।
মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে একক ভরের কোনো বস্তু স্থাপন করলে এর উপর যে বল প্রযুক্ত হয় তাকে ঐ ক্ষেত্রের দরুন ঐ বিন্দুর আকর্ষণ বল বা মহাকর্ষীয় প্রাবল্য বলে।মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে m ভরের বস্তুর উপর F বল ক্রিয়া করলে ঐ বিন্দুতে মহাকর্ষীয় প্রাবল্য হবে,
এই সমীকরণ থেকে দেখা যায়, m এর মান বৃদ্ধি পেলে E হ্রাস পায় ৷ মহাকর্ষীয় ক্ষেত্রের বিভিন্ন বিন্দুতে প্রাবল্য বিভিন্ন হবে। বস্তুর ভর বেশি হলে প্রাবল্য বাড়বে, দূরত্ব বেশি হলে প্রাবল্য কমবে। এটি একটি ভেক্টর রাশি। এর মান ও দিক আছে ৷ কোনো বিন্দুতে একাধিক প্রাবল্য ক্রিয়াশীল হলে ভেক্টর যোগের পদ্ধতি অনুযায়ী ঐ বিন্দুতে লব্ধি-প্রাবল্য গণনা করা যায় ৷ প্রাবল্যের অভিমুখই মহাকর্ষীয় ক্ষেত্রের অভিমুখ নির্দেশ করে ৷ অনেক ক্ষেত্রে প্রাবল্য বোঝাতে শুধু মহাকর্ষীয় ক্ষেত্র লেখা হয় ৷[2] এসআই পদ্ধতিতে প্রাবল্যের একক নিউটন প্রতি কিলোগ
অসীম দূরত্ব থেকে একক ভরের কোনো বস্তুকে মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে আনতে মহাকর্ষীয় বল দ্বারা সম্পন্ন কাজের পরিমাণকে ঐ বিন্দুর মহাকর্ষীয় বিভব বলে।
অসীম দূরত্ব থেকে m ভরের কোনো বস্তুকে মহাকর্ষীয় ক্ষেত্রের কোনো বিন্দুতে আনতে যদি W পরিমাণ কাজ সম্পন্ন হয়,তবে ঐ বিন্দুর মহাকর্ষীয় বিভব V হবে
মহাকর্ষীয় বিভব একটি স্কেলার রাশি, এর কোন দিক নেই। এর একক হলো ।GM/r=GM/infinite W=GM/r সুতরাং A বিন্দুর মহাকর্ষ বিভব [V= GM/r]
আপেক্ষিকতা এবং মহাকর্ষ
আইনস্টাইনের সাধারণ আপেক্ষিকতা সূত্রে মহাকর্ষ কে সময়-শুন্যের বক্রতা হিসেবে গন্য করা হয়েছে।
সাধারণ আপেক্ষিকতা সূত্র অনুসারে ত্রিমাত্রিক শুন্যতা এবং সময় একসাথে একটি চতুর্মাত্রিক মহাবিশ্বষসৃষ্টি ্টি করেছে।
কোনো ভরযুক্ত বস্তু র উপস্থিতিতে এই সময় শুন্য মাত্রায় বক্রতার সৃষ্টি হয়। একে জিওডেসিক বলা হয়। জিওডেসিক হলো বক্র মহাকর্ষীয় ক্ষেত্রে কোনো বস্তুর স্বাভাবিক পথ।
যে কোনো বস্তূ বা তড়িৎচৌম্বকীয় তরঙ্গ এই জিওডেসিক পথকে গ্রহণ করে।
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.