From Wikipedia, the free encyclopedia
Общата теория на относителността (ОТО) е геометрична теория за гравитацията, публикувана от Алберт Айнщайн през 1915 година. Тя е общоприетият в съвременната физика възглед за характера на гравитацията. Теорията обединява специалната теория на относителността с нютоновия закон за всеобщото привличане и описва гравитацията като геометрично свойство на пространство-времето. В частност, изкривяването на пространство-времето е пряко свързано с тензора енергия-импулс, който зависи от количествата материя и енергия. Тази зависимост е изразена чрез уравненията на Айнщайн, система от частни диференциални уравнения.
За информацията в тази статия или раздел не са посочени източници. Въпросната информация може да е непълна, неточна или изцяло невярна. Имайте предвид, че това може да стане причина за изтриването на цялата статия или раздел. |
Много предвиждания на общата теория на относителността се различават значително от тези на класическата физика, особено във връзка с хода на времето, геометрията на пространството, движението на телата при свободно падане и разпространението на светлината. Примери за такива разлики са гравитационното забавяне на времето, гравитационното червено отместване на светлината и ефекта на Шапиро. Предвижданията на общата теория на относителността се потвърждават от всички наблюдения и експерименти. Макар че не е единствената теория за гравитацията, тя е най-простата, която съответства напълно на експерименталните данни. Въпреки това, общата теория на относителността има и някои непълноти, най-важната от които е нейното съгласуване с квантовата механика, което би създало пълна и последователна теория на квантовата гравитация.
Общата теория на относителността има важни последствия за астрофизиката. Тя подсказва, че в края на развитието си масивните звезди могат да се превърнат в черни дупки, области от пространството, в които пространство-времето е толкова изкривено, че нищо не може да ги напусне. Изкривяването на светлината от гравитацията може да създаде гравитационни лещи, при които се наблюдава повече от един образ на един и същ астрономически обект. Теорията предсказва и наличието на гравитационни вълни, които впоследствие са измерени непряко, а опитите за прякото им наблюдение са основната цел на проекта LIGO. В допълнение към това, общата теория на относителността е основата на съвременните космологични модели на постоянно разширяващата се Вселена.
Общата относителност се основава на група съществени принципи, които определят нейната разработка.
(Принципът на еквивалентността, който е изходна точка в изграждането на общата теория на относителността, завършва като следствие на теорията и на принципа, че инерциалното движение е по 'геодезични линии').
Уравненията на Айнщайн описват как напрегнатостта на енергията (stress-energy) предизвиква изкривяване на пространството/времето.
Записани в тензорна форма те са
Решението на Уравненията на Айнщаин за полето ни дава метрика за времепространството. Тази метрика описва структурата на времепространството, зададена от напрегнатостта на енергията и съответната координатна система, за която е получено конкретното решение. Това са нелинейни диференциални уравнения и точното им решение често пъти е невъзможно. Все пак известни са множество частни решения.
Уравненията на Айнщайн за полето се свеждат към Законите на Нютон в случаите на слабо гравитационно поле и при скорости, много по-ниски от скоростта на светлината. При тези 2 приближения стойността на се определя от формулата:
Съществуват и други теории, обосновани на същите начални предположения, но включващи други ограничения. Резултатът почти винаги се изразява в друго уравнение за полето. Виж уравнения на Brans-Dicke, teleparallelism, теория на Rosen и теория на Einstein-Cartan.
До тук имаме само бегла представа за уравненията на Айнщайн: G=8πT. От лявата страна G представлява тензор на Айнщайн. Този тензор от своя страна представлява геометрията на времепространството.
А от друга страна ние вече знаем че изкривяването на времепространството става при наличие на материя, това значи че Т от дясната страна на равенството е представянето на материята.
Тензорът Т (напрегнатост на енергията) се представя чрез следните серии от числа:
Txx, Txy, Txz, Txt, Tyy, Tyz, Tyt, Tzz, Tzt, Ttt;
Тези числа сами по себе си имат различен смисъл, заедно те представляват тензора на напрегнатост на енергията.
Когато разглеждаме изкривяванията в пространството имаме нужда от специална метрика (измерителни единици) по подобие на:
, където:
d – разстояние между центъра на координатната система и дадена точка с координати x, y. Този запис е в сила когато x и y са разстояния, измерени спрямо единични вектори по координатните оси X и Y.
В случай че базовите вектори не са с единична дължина е необходимо да се направи корекция. По-точната формула за записване на горното разстояние е следната:
, където
Вижда се че записа по този начин води до усложнения и затова прибягваме до по-опростено записване:
където:
Формулата за разстояние може да бъде обобщена и за наклонена координатна система (където осите X и Y не са перпендикулярни.
Така получените коефициенти са много важни във физиката. Заедно те определят метриката или физическото разстояние спрямо произволно избрана координатна система. В действителност метриката е още по-сложна от примера, който даваме. За да стане ясно това, е нужно да въведем и третата координата – Z и съответната метрика, свързана със Z: gzz, gxz, gyz. Трябва да въведем и времевата компонента на пространството: t и свързаните с нея метрични компоненти: gtt, gtx, gty, gtz.
Така получаваме 10 компоненти на пространството: gxx, gxy, gxz, gxt, gyy, gyz, gyt, gzz, gzt, gtt.
Метриката на пространството може да се променя при преминаване от една точка на пространството в друга. Ако работим с изкривена координатна система може да имаме координатна равнина, която започва в едно направление, но на друго място завършва сливайки се с координатната равнина от друго направление.
Възможно е да начертаем изкривена решетка върху плосък лист хартия. По такъв начин показваме метриката на изкривеното пространство, проектирайки го върху плоското пространство.
А от друга страна е невъзможно да начертаем идеална права линия върху изкривена плоскост.
Изследвайки много внимателно изменението на пространствената метрика от точка в точка можем да определим дали чертаем криволинейни координати в плоско пространство или чертаем в изкривено пространство.
(Stress-Energy Tensor)
Ttt – измерва количеството материя в дадена точка – плътност
Txt, Tyt и Tzt – измерва колко бързо масата се придвижва (импулс)
Txx, Tyy и Tzz – измерва напрегнатостта (налягането) по всяко едно от трите направления
Txy, Txz и Tyz – измерва напрегнатостта (усукването) на материята по координатните оси
Както се вижда от по-горе напрегнатостта, (налягане и усукване) и импулса влизат едновременно в Айнщайновото уравнение за полето. Това значи че напрегнатостта, (налягане, усукване) и импулс имат еднакво влияние върху изкривяването на времепространството. Това е свързано с другото известно уравнение на Айнщайн:
Изкривяването на времепространството засяга посоката на движение на телата и променя геодезията на пространството. В същото време уравнението на Айнщайн показва как материята и нейното движение или напрегнатост променят формата на времепространството. По този начин Айнщайн дава принципно решение на фундаменталните проблеми на физиката. Но в същото време намирането на практическите решения за конкретните ситуации се оказва доста трудно и си остава до голяма степен работа само за компютрите.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.