From Wikipedia, the free encyclopedia
Qrup nəzəriyyəsi — G çoxluğunda elə müəyyən əməl mövcuddursa ki, həmin coxluğun ixtiyari iki ünsürünə (elementinə) üçüncü elementi qarşı qoysun və həmin əmələ nəzərən aşağıdakı 4 aksiom:
Bu məqaləni vikiləşdirmək lazımdır. |
ödənərsə, onda G çoxluğu qrup adlanır.
Əgər G qrupunun hər hansı H kompleksi qrup əmələ gətirərsə, onda o G qrupunun altqrupu adlanir.
Məsələn, Tam ədədlər çoxluğu toplama əməlinə gorə qrup əmələ gətirir. Həmçinin cüt ədədlər çoxluğu da toplamaya nəzərən qrup əmələ gətirdiyindən cut ədədlər tam ədədlərin altqrupunu təskil edir.
Qrupun kompleksi onun elementlərindən düzəldilmiş ixtiyari çoxluqdur.
Əgər G çoxluğunda onun ixtiyari iki a və b elementinə qarshi həmin çoxluğun hər hansi c elementini qarshi qoyan əməl movcuddursa və bu əmələ nəzərən assosiativlik odənərsə onda G coxlugu yarımqrup adlanır.
Əgər yarımqrup özünde vahid element saxlayarsa belə yarımqrup monoid adlanır.
Özünde vahid element saxlayan yarımqrup monoid adlanır.
Aydındır ki, çoxluq kimi monoid yarımqrupun alt çoxluğudur
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.